20.09.2019

Найти экстремум функции примеры решений. Необходимое условие экстремума функции. Последовательность нахождения экстремума


Один из типов задач математического анализа: исследовать функцию одной переменной на минимум и (или) максимум. Иногда экстремум (собирательное название для минимума и максимума) функции требуется найти на некотором интервале. Задачи подобного плана попадаются также в курсе средней школы и среди заданий Единого Государственного Экзамена.
Постановка задачи 1:

Дана функция , определенная на некотором промежутке. Требуется найти точки максимумов (минимумов) функции.
Теоретические основы.
Определение: Говорят, что функция имеет в точке максимум, рис. а) (или минимум, рис. б)) , если существует некоторая окрестность в промежутке, где функция определена, что для всех точек этой окрестности выполняется неравенство
().
Замечание:
Extremum- (латынь) крайнее.
Maximum – (латынь) наибольшее.
Minimum – (латынь) наименьшее.

Необходимое условие экстремума (Теорема Ферма):

Пусть функция определена на некотором промежутке и во внутренней точке с этого промежутка принимает наибольшее (наименьшее) значение. Если существует двусторонняя конечная производная , то необходимо .
Определение: Если выполняется равенство , то точку будем называть стационарной точкой .
Определение: Стационарные точки и точки, в которых не существует двусторонней конечной производной, будем называть точками, подозрительными на экстремум.
Иллюстрация некоторых случаев, кроме представленных выше двух:

1) Экстремума нет, первая производная равна нулю.
2) Точка максимума, первая производная слева и справа бесконечна.
3) Экстремума нет, первая производная слева и справа бесконечна.
4) Точка минимума, первая производная слева не равна первой производной справа.
5) Экстремума нет, первая производная слева не равна первой производной справа.

Замечание (Геометрический смысл производной):

Производная функции в точке численно равна угловому коэффициенту касательной к графику функции , проведенной в точке .
Пример 1:

Рассмотрим функцию .
Вычислим производную этой функции:

Итак, точки, подозрительные на экстремум:
Построим график этой функции.

На графики видно, что функция имеет максимум при , минимумы при . При функция экстремума не имеет.

Из этого примера видно, что равенство нулю производной в точке является обязательным условием экстремума функции в этой точке, но не является достаточным условием.
Теорема (условие монотонности функции):

Пусть функция определена и непрерывна в непрерывна в некотором промежутке и внутри него имеет конечную производную . Для того, чтобы была на этом промежутке монотонно возрастающей (убывающей) в широком смысле, необходимо и достаточно условие

Достаточное условие экстремума:

Предположим, что в некоторой окрестности стационарной точки существует конечная производная и как слева от ,так и справа от (в отдельности) сохраняет определенный знак. Тогда возможны следующие три случая:

1) при и при (производная при переходе через точку меняет свой знак с плюса на минус). Т.е. при функция возрастает, а при — убывает. Значит, значение будет наибольшим в промежутке . Другими словами, в точке функция имеет максимум.

Пояснение: Сверху от числовой оси указывается знак производной на соответствующем интервале, снизу от числовой оси обозначается поведение функции на соответствующем интервале (убывание или возрастание).
2) при и при (производная при переходе через точку меняет свой знак с минуса на плюс). Т.е. при функция убывает, а при — возрастает. Значит, значение будет наименьшим в промежутке . Другими словами, в точке функция имеет минимум.

3) при и при ( при и при )(производная при переходе через точку не меняет свой знак). Т.е. функция в промежутке убывает (возрастает). Другими словами, в точке функция не имеет экстремума.

Пример 2:

Рассмотрим вновь функцию .
Производная этой функции имеет вид:

Точки, подозрительные на экстремум: . Выясним знаки производной на соответствующих интервалах (решим методом интервалов неравенства и ):

Из рисунка видно, что в точке производная меняет свой знак с минуса на плюс, т.е. при функция имеет минимум.

В точке производная меняет свой знак с плюса на минус, т.е. при функция имеет максимум.
В точке производная меняет свой знак с минуса на плюс, т.е. при функция имеет минимум.
В точке производная своего знака не меняет, т.е. экстремума там нет.
Полученные данные полностью подтверждаются графиком функции.

Алгоритм решения задачи 1.

1) Найти производную функции .

2) Найти стационарные точки (точки, подозрительные на экстремум), решив уравнение .Обратить внимание на точки, в которых не существует двусторонней конечной производной.

3) Выяснить, меняет ли производная свой знак в точках, подозрительных на экстремум.. Если она меняет знак с минуса на плюс, то в этой точке функция имеет свой минимум. Если с плюса на минус, то максимум, а если знак производной не меняется, то экстремума в этой точке нет.

4) Найти значение функции в точках минимума (максимума).

Дополнение:

Исследование знака первой производной функции по разные стороны от стационарной точки (достаточное условие экстремума) можно заменить исследованием знака второй производной в этой стационарной точке (при условии её существования).
1) если , то функция имеет в этой точке минимум.
2) если , то функция имеет в этой точке максимум.
3) если , то вопрос о существовании экстремума в этой точке остается открытым. Решим неравенство

Что такое экстремум функции и каково необходимое условие экстремума?

Экстремумом функции называется максимум и минимум функции.

Необходимое условие максимума и минимума (экстремума) функции следующее: если функция f(x) имеет экстремум в точке х = а, то в этой точке производная либо равна нулю, либо бесконечна, либо не существует.

Это условие необходимое, но не достаточное. Производная в точке х = а может обращаться в нуль, в бесконечность или не существовать без того, чтобы функция имела экстремум в этой точке.

Каково достаточное условие экстремума функции (максимума или минимума)?

Первое условие:

Если в достаточной близости от точки х = а производная f?(x) положительна слева от а и отрицательна справа от а, то в самой точке х = а функция f(x) имеет максимум

Если в достаточной близости от точки х = а производная f?(x) отрицательна слева от а и положительна справа от а, то в самой точке х = а функция f(x) имеет минимум при условии, что функция f(x) здесь непрерывна.

Вместо этого можно воспользоваться вторым достаточным условием экстремума функции:

Пусть в точке х = а первая производная f?(x) обращается в нуль; если при этом вторая производная f??(а) отрицательна, то функция f(x) имеет в точке x = a максимум, если положительна - то минимум.

Что такое критическая точка функции и как её найти?

Это значение аргумента функции, при котором функция имеет экстремум (т.е. максимум или минимум). Чтобы его найти, нужно найти производную функции f?(x) и, приравняв её к нулю, решить уравнение f?(x) = 0. Корни этого уравнения, а также те точки, в которых не существует производная данной функции, являются критическими точками, т. е. значениями аргумента, при которых может быть экстремум. Их можно легко определить, взглянув на график производной : нас интересуют те значения аргумента, при которых график функции пересекает ось абсцисс (ось Ох) и те, при которых график терпит разрывы.

Для примера найдём экстремум параболы .

Функция y(x) = 3x2 + 2x - 50.

Производная функции: y?(x) = 6x + 2

Решаем уравнение: y?(x) = 0

6х + 2 = 0, 6х = -2, х=-2/6 = -1/3

В данном случае критическая точка - это х0=-1/3. Именно при этом значении аргумента функция имеет экстремум . Чтобы его найти , подставляем в выражение для функции вместо «х» найдённое число:

y0 = 3*(-1/3)2 + 2*(-1/3) - 50 = 3*1/9 - 2/3 - 50 = 1/3 - 2/3 - 50 = -1/3 - 50 = -50,333.

Как определить максимум и минимум функции, т.е. её наибольшее и наименьшее значения?

Если знак производной при переходе через критическую точку х0 меняется с «плюса» на «минус», то х0 есть точка максимума ; если же знак производной меняется с минуса на плюс, то х0 есть точка минимума ; если знак не меняется, то в точке х0 ни максимума, ни минимума нет.

Для рассмотренного примера:

Берём произвольное значение аргумента слева от критической точки: х = -1

При х = -1 значение производной будет у?(-1) = 6*(-1) + 2 = -6 + 2 = -4 (т.е. знак - «минус»).

Теперь берём произвольное значение аргумента справа от критической точки: х = 1

При х = 1 значение производной будет у(1) = 6*1 + 2 = 6 + 2 = 8 (т.е. знак - «плюс»).

Как видим, производная при переходе через критическую точку поменяла знак с минуса на плюс. Значит, при критическом значении х0 мы имеем точку минимума.

Наибольшее и наименьшее значение функции на интервале (на отрезке) находят по такой же процедуре, только с учетом того, что, возможно, не все критические точки будут лежать внутри указанного интервала. Те критические точки, которые находятся за пределом интервала, нужно исключить из рассмотрения. Если внутри интервала находится только одна критическая точка - в ней будет либо максимум, либо минимум. В этом случае для определения наибольшего и наименьшего значений функции учитываем также значения функции на концах интервала.

Например, найдём наибольшее и наименьшее значения функции

y(x) = 3sin(x) — 0,5х

на интервалах:

Итак, производная функции —

y?(x) = 3cos(x) — 0,5

Решаем уравнение 3cos(x) — 0,5 = 0

cos(x) = 0,5/3 = 0,16667

х = ±arccos(0,16667) + 2πk.

Находим критические точки на интервале [-9; 9]:

х = arccos(0,16667) — 2π*2 = -11,163 (не входит в интервал)

х = -arccos(0,16667) — 2π*1 = -7,687

х = arccos(0,16667) — 2π*1 = -4,88

х = -arccos(0,16667) + 2π*0 = -1,403

х = arccos(0,16667) + 2π*0 = 1,403

х = -arccos(0,16667) + 2π*1 = 4,88

х = arccos(0,16667) + 2π*1 = 7,687

х = -arccos(0,16667) + 2π*2 = 11,163 (не входит в интервал)

Находим значения функции при критических значениях аргумента:

y(-7,687) = 3cos(-7,687) — 0,5 = 0,885

y(-4,88) = 3cos(-4,88) — 0,5 = 5,398

y(-1,403) = 3cos(-1,403) — 0,5 = -2,256

y(1,403) = 3cos(1,403) — 0,5 = 2,256

y(4,88) = 3cos(4,88) — 0,5 = -5,398

y(7,687) = 3cos(7,687) — 0,5 = -0,885

Видно, что на интервале [-9; 9] наибольшее значение функция имеет при x = -4,88:

x = -4,88, у = 5,398,

а наименьшее - при х = 4,88:

x = 4,88, у = -5,398.

На интервале [-6; -3] мы имеем только одну критическую точку: х = -4,88. Значение функции при х = -4,88 равно у = 5,398.

Находим значение функции на концах интервала:

y(-6) = 3cos(-6) — 0,5 = 3,838

y(-3) = 3cos(-3) — 0,5 = 1,077

На интервале [-6; -3] имеем наибольшее значение функции

у = 5,398 при x = -4,88

наименьшее значение —

у = 1,077 при x = -3

Как найти точки перегиба графика функции и определить стороны выпуклости и вогнутости?

Чтобы найти все точки перегиба линии y = f(x), надо найти вторую производную, приравнять её к нулю (решить уравнение) и испытать все те значения х, для которых вторая производная равна нулю, бесконечна или не существует. Если при переходе через одно из этих значений вторая производная меняет знак, то график функции имеет в этой точке перегиб. Если же не меняет, то перегиба нет.

Корни уравнения f ? (x) = 0, а также возможные точки разрыва функции и второй производной разбивают область определения функции на ряд интервалов. Выпуклость на каждом их интервалов определяется знаком второй производной. Если вторая производная в точке на исследуемом интервале положительна, то линия y = f(x) обращена здесь вогнутостью кверху, а если отрицательна - то книзу.

Как найти экстремумы функции двух переменных?

Чтобы найти экстремумы функции f(x,y), дифференцируемой в области её задания, нужно:

1) найти критические точки, а для этого — решить систему уравнений

fх? (x,y) = 0, fу? (x,y) = 0

2) для каждой критической точки Р0(a;b) исследовать, остается ли неизменным знак разности

для всех точек (х;у), достаточно близких к Р0. Если разность сохраняет положительный знак, то в точке Р0 имеем минимум, если отрицательный - то максимум. Если разность не сохраняет знака, то в точке Р0 экстремума нет.

Аналогично определяют экстремумы функции при большем числе аргументов.

Что такое экстремум функции и каково необходимое условие экстремума?

Экстремумом функции называется максимум и минимум функции.

Необходимое условие максимума и минимума (экстремума) функции следующее: если функция f(x) имеет экстремум в точке х = а, то в этой точке производная либо равна нулю, либо бесконечна, либо не существует.

Это условие необходимое, но не достаточное. Производная в точке х = а может обращаться в нуль, в бесконечность или не существовать без того, чтобы функция имела экстремум в этой точке.

Каково достаточное условие экстремума функции (максимума или минимума)?

Первое условие:

Если в достаточной близости от точки х = а производная f?(x) положительна слева от а и отрицательна справа от а, то в самой точке х = а функция f(x) имеет максимум

Если в достаточной близости от точки х = а производная f?(x) отрицательна слева от а и положительна справа от а, то в самой точке х = а функция f(x) имеет минимум при условии, что функция f(x) здесь непрерывна.

Вместо этого можно воспользоваться вторым достаточным условием экстремума функции:

Пусть в точке х = а первая производная f?(x) обращается в нуль; если при этом вторая производная f??(а) отрицательна, то функция f(x) имеет в точке x = a максимум, если положительна - то минимум.

Что такое критическая точка функции и как её найти?

Это значение аргумента функции, при котором функция имеет экстремум (т.е. максимум или минимум). Чтобы его найти, нужно найти производную функции f?(x) и, приравняв её к нулю, решить уравнение f?(x) = 0. Корни этого уравнения, а также те точки, в которых не существует производная данной функции, являются критическими точками, т. е. значениями аргумента, при которых может быть экстремум. Их можно легко определить, взглянув на график производной : нас интересуют те значения аргумента, при которых график функции пересекает ось абсцисс (ось Ох) и те, при которых график терпит разрывы.

Для примера найдём экстремум параболы .

Функция y(x) = 3x2 + 2x - 50.

Производная функции: y?(x) = 6x + 2

Решаем уравнение: y?(x) = 0

6х + 2 = 0, 6х = -2, х=-2/6 = -1/3

В данном случае критическая точка - это х0=-1/3. Именно при этом значении аргумента функция имеет экстремум . Чтобы его найти , подставляем в выражение для функции вместо «х» найдённое число:

y0 = 3*(-1/3)2 + 2*(-1/3) - 50 = 3*1/9 - 2/3 - 50 = 1/3 - 2/3 - 50 = -1/3 - 50 = -50,333.

Как определить максимум и минимум функции, т.е. её наибольшее и наименьшее значения?

Если знак производной при переходе через критическую точку х0 меняется с «плюса» на «минус», то х0 есть точка максимума ; если же знак производной меняется с минуса на плюс, то х0 есть точка минимума ; если знак не меняется, то в точке х0 ни максимума, ни минимума нет.

Для рассмотренного примера:

Берём произвольное значение аргумента слева от критической точки: х = -1

При х = -1 значение производной будет у?(-1) = 6*(-1) + 2 = -6 + 2 = -4 (т.е. знак - «минус»).

Теперь берём произвольное значение аргумента справа от критической точки: х = 1

При х = 1 значение производной будет у(1) = 6*1 + 2 = 6 + 2 = 8 (т.е. знак - «плюс»).

Как видим, производная при переходе через критическую точку поменяла знак с минуса на плюс. Значит, при критическом значении х0 мы имеем точку минимума.

Наибольшее и наименьшее значение функции на интервале (на отрезке) находят по такой же процедуре, только с учетом того, что, возможно, не все критические точки будут лежать внутри указанного интервала. Те критические точки, которые находятся за пределом интервала, нужно исключить из рассмотрения. Если внутри интервала находится только одна критическая точка - в ней будет либо максимум, либо минимум. В этом случае для определения наибольшего и наименьшего значений функции учитываем также значения функции на концах интервала.

Например, найдём наибольшее и наименьшее значения функции

y(x) = 3sin(x) — 0,5х

на интервалах:

Итак, производная функции —

y?(x) = 3cos(x) — 0,5

Решаем уравнение 3cos(x) — 0,5 = 0

cos(x) = 0,5/3 = 0,16667

х = ±arccos(0,16667) + 2πk.

Находим критические точки на интервале [-9; 9]:

х = arccos(0,16667) — 2π*2 = -11,163 (не входит в интервал)

х = -arccos(0,16667) — 2π*1 = -7,687

х = arccos(0,16667) — 2π*1 = -4,88

х = -arccos(0,16667) + 2π*0 = -1,403

х = arccos(0,16667) + 2π*0 = 1,403

х = -arccos(0,16667) + 2π*1 = 4,88

х = arccos(0,16667) + 2π*1 = 7,687

х = -arccos(0,16667) + 2π*2 = 11,163 (не входит в интервал)

Находим значения функции при критических значениях аргумента:

y(-7,687) = 3cos(-7,687) — 0,5 = 0,885

y(-4,88) = 3cos(-4,88) — 0,5 = 5,398

y(-1,403) = 3cos(-1,403) — 0,5 = -2,256

y(1,403) = 3cos(1,403) — 0,5 = 2,256

y(4,88) = 3cos(4,88) — 0,5 = -5,398

y(7,687) = 3cos(7,687) — 0,5 = -0,885

Видно, что на интервале [-9; 9] наибольшее значение функция имеет при x = -4,88:

x = -4,88, у = 5,398,

а наименьшее - при х = 4,88:

x = 4,88, у = -5,398.

На интервале [-6; -3] мы имеем только одну критическую точку: х = -4,88. Значение функции при х = -4,88 равно у = 5,398.

Находим значение функции на концах интервала:

y(-6) = 3cos(-6) — 0,5 = 3,838

y(-3) = 3cos(-3) — 0,5 = 1,077

На интервале [-6; -3] имеем наибольшее значение функции

у = 5,398 при x = -4,88

наименьшее значение —

у = 1,077 при x = -3

Как найти точки перегиба графика функции и определить стороны выпуклости и вогнутости?

Чтобы найти все точки перегиба линии y = f(x), надо найти вторую производную, приравнять её к нулю (решить уравнение) и испытать все те значения х, для которых вторая производная равна нулю, бесконечна или не существует. Если при переходе через одно из этих значений вторая производная меняет знак, то график функции имеет в этой точке перегиб. Если же не меняет, то перегиба нет.

Корни уравнения f ? (x) = 0, а также возможные точки разрыва функции и второй производной разбивают область определения функции на ряд интервалов. Выпуклость на каждом их интервалов определяется знаком второй производной. Если вторая производная в точке на исследуемом интервале положительна, то линия y = f(x) обращена здесь вогнутостью кверху, а если отрицательна - то книзу.

Как найти экстремумы функции двух переменных?

Чтобы найти экстремумы функции f(x,y), дифференцируемой в области её задания, нужно:

1) найти критические точки, а для этого — решить систему уравнений

fх? (x,y) = 0, fу? (x,y) = 0

2) для каждой критической точки Р0(a;b) исследовать, остается ли неизменным знак разности

для всех точек (х;у), достаточно близких к Р0. Если разность сохраняет положительный знак, то в точке Р0 имеем минимум, если отрицательный - то максимум. Если разность не сохраняет знака, то в точке Р0 экстремума нет.

Аналогично определяют экстремумы функции при большем числе аргументов.



Кто такой Геракл
Геракл в древнегреческой мифологии — величайший герой, сын бога Зевса и Алкмены — жены фиванского царя Амфитриона. При рождении был назван Алкидом. Неоднократно упомянут уже в «Илиаде» (II 658 и др.).Среди многочисленных мифов о Геракле наиболее известен цикл сказаний о 12 подвигах, совершенных

Как называются деньги Нигерии
Название страны Название - денег/разменной монеты Австралия Австралийский доллар/цент Австрия Австрийский шиллинг/грош — евро Азербайджан Манат Албания Лек/киндарка Алжир Алжирский динар/сантимо Аргентина Аргентинский аустраль/сентаво Афганистан Афгани/пул Бангладеш Така/пайс Бельгия Бельгийский франк/сантимо — евро Болгария Лев/стотинка

Что такое желтая лихорадка
Вся информация предоставляется исключительно в ознакомительных целях. Поставить правильный диагноз и назначить соответствующее лечение может только врач! Желтая лихорадка (амариллез) — острое геморрагическое трансмиссивное заболевание вирусной этиологии, тропический зооантропоноз Африки и Южной Америки. Передаётся с укусом комаров. Симптомы Инкуб

Какие песни играют в 12 серии 6 сезона сериала «Тайны Смолвиля»
В 6 сезоне сериала «Тайны Смолвиля» двадцать серий. Promo Music: APM Music — Dark Bells (1:55); Bloc Party — The Prayer (3:44). Серия № 3: Wither (Угасание): T

Что такое премия ФИФА имени Ференца Пушкаша
Премия ФИФА имени Ференца Пушкаша (англ. FIFA Puskas Award) — награда, учреждённая ФИФА 20 октября 2009 года. Награда вручается игроку (независимо от пола), забившему самый красивый гол года. Премия названа в честь капитана великой венгерской Золотой команды 50-х годов Ференца Пушкаша. Первая церемония

Почему каменный век называется «каменным»
В начальный период истории человечества преимущественное употребление имели каменные орудия, поэтому он называется каменным веком. Согласно современной классификации каменный век делится на: древнекаменный, или палеолит, датируемый с момента появления человека (более 2,5 миллионов лет до н. э.) и приблизительно до 10 тысячелетия до н. э.; среднекаменный, мезолит: 10 тысячелетие


1. Узнать данные владельца (фамилию, имя, отчество) по номеру мобильного телефона, можно обратившись за помощью к сотрудникам спецслужб или в государственные органы. Сотрудники спецслужб могут воспользоваться данными мобильного оператора в случае поимки преступника или раскрытия террористического акта. 2. Можно нанять частного детектива. Частные детективы обычно «

Какие препараты относятся к допинговым средствам
Само название - допинг происходит от английского слова dope - что означает давать наркотик. Согласно определению Медицинской комиссии Международного Олимпийского Комитета, допингом считается введение в организм спортсменов любым путем (в виде уколов, таблеток, при вдыхании и т.д.) фармакологических препаратов, искусственно повышающих работоспособность и спортивный результат. Кроме

Когда и кем была открыта самая большая в мире пещера
Самая большая в мире пещера Шондонг находится во вьетнамском национальном парке Фонгня-Кебанг, который расположен в 500 км южнее столицы страны Ханоя. Протяженность пещеры составляет около 9 км. При этом высота ее достигает 200 м, а ширина — 150 м. Объем пещеры оценивается в 38,5 млн м3. Пещера была впервые исследована в а

Почему считается, что Вселенная расширяется
Прежде всего, необходимо подчеркнуть, что использование термина «Вселенная», а также обсуждение её наблюдаемых свойств имеет смысл только начиная с масштабов пространства, превышающих 100 мегапарсек, поскольку до расстояний в сотни мегапарсек ещё прослеживаются такие космические структуры, как скопления галактик (1 парсек = 3,085&middo

Какой грамматический словарь русского языка считается в Российской Федерации официальным
Список грамматик, словарей и справочников, содержащих нормы современного русского литературного языка при его использовании в качестве государственного языка Российской Федерации: 1. Орфографический словарь русского языка. Букчина Б.З., Сазонова И.К., Чельцова Л.К. — М.: «АСТ-ПРЕСС», 2008. — 128

Что такое экстремум функции и каково необходимое условие экстремума?

Экстремумом функции называется максимум и минимум функции.

Необходимое условие максимума и минимума (экстремума) функции следующее: если функция f(x) имеет экстремум в точке х = а, то в этой точке производная либо равна нулю, либо бесконечна, либо не существует.

Это условие необходимое, но не достаточное. Производная в точке х = а может обращаться в нуль, в бесконечность или не существовать без того, чтобы функция имела экстремум в этой точке.

Каково достаточное условие экстремума функции (максимума или минимума)?

Первое условие:

Если в достаточной близости от точки х = а производная f?(x) положительна слева от а и отрицательна справа от а, то в самой точке х = а функция f(x) имеет максимум

Если в достаточной близости от точки х = а производная f?(x) отрицательна слева от а и положительна справа от а, то в самой точке х = а функция f(x) имеет минимум при условии, что функция f(x) здесь непрерывна.

Вместо этого можно воспользоваться вторым достаточным условием экстремума функции:

Пусть в точке х = а первая производная f?(x) обращается в нуль; если при этом вторая производная f??(а) отрицательна, то функция f(x) имеет в точке x = a максимум, если положительна - то минимум.

Что такое критическая точка функции и как её найти?

Это значение аргумента функции, при котором функция имеет экстремум (т.е. максимум или минимум). Чтобы его найти, нужно найти производную функции f?(x) и, приравняв её к нулю, решить уравнение f?(x) = 0. Корни этого уравнения, а также те точки, в которых не существует производная данной функции, являются критическими точками, т. е. значениями аргумента, при которых может быть экстремум. Их можно легко определить, взглянув на график производной : нас интересуют те значения аргумента, при которых график функции пересекает ось абсцисс (ось Ох) и те, при которых график терпит разрывы.

Для примера найдём экстремум параболы .

Функция y(x) = 3x2 + 2x - 50.

Производная функции: y?(x) = 6x + 2

Решаем уравнение: y?(x) = 0

6х + 2 = 0, 6х = -2, х=-2/6 = -1/3

В данном случае критическая точка - это х0=-1/3. Именно при этом значении аргумента функция имеет экстремум . Чтобы его найти , подставляем в выражение для функции вместо «х» найдённое число:

y0 = 3*(-1/3)2 + 2*(-1/3) - 50 = 3*1/9 - 2/3 - 50 = 1/3 - 2/3 - 50 = -1/3 - 50 = -50,333.

Как определить максимум и минимум функции, т.е. её наибольшее и наименьшее значения?

Если знак производной при переходе через критическую точку х0 меняется с «плюса» на «минус», то х0 есть точка максимума ; если же знак производной меняется с минуса на плюс, то х0 есть точка минимума ; если знак не меняется, то в точке х0 ни максимума, ни минимума нет.

Для рассмотренного примера:

Берём произвольное значение аргумента слева от критической точки: х = -1

При х = -1 значение производной будет у?(-1) = 6*(-1) + 2 = -6 + 2 = -4 (т.е. знак - «минус»).

Теперь берём произвольное значение аргумента справа от критической точки: х = 1

При х = 1 значение производной будет у(1) = 6*1 + 2 = 6 + 2 = 8 (т.е. знак - «плюс»).

Как видим, производная при переходе через критическую точку поменяла знак с минуса на плюс. Значит, при критическом значении х0 мы имеем точку минимума.

Наибольшее и наименьшее значение функции на интервале (на отрезке) находят по такой же процедуре, только с учетом того, что, возможно, не все критические точки будут лежать внутри указанного интервала. Те критические точки, которые находятся за пределом интервала, нужно исключить из рассмотрения. Если внутри интервала находится только одна критическая точка - в ней будет либо максимум, либо минимум. В этом случае для определения наибольшего и наименьшего значений функции учитываем также значения функции на концах интервала.

Например, найдём наибольшее и наименьшее значения функции

y(x) = 3sin(x) — 0,5х

на интервалах:

Итак, производная функции —

y?(x) = 3cos(x) — 0,5

Решаем уравнение 3cos(x) — 0,5 = 0

cos(x) = 0,5/3 = 0,16667

х = ±arccos(0,16667) + 2πk.

Находим критические точки на интервале [-9; 9]:

х = arccos(0,16667) — 2π*2 = -11,163 (не входит в интервал)

х = -arccos(0,16667) — 2π*1 = -7,687

х = arccos(0,16667) — 2π*1 = -4,88

х = -arccos(0,16667) + 2π*0 = -1,403

х = arccos(0,16667) + 2π*0 = 1,403

х = -arccos(0,16667) + 2π*1 = 4,88

х = arccos(0,16667) + 2π*1 = 7,687

х = -arccos(0,16667) + 2π*2 = 11,163 (не входит в интервал)

Находим значения функции при критических значениях аргумента:

y(-7,687) = 3cos(-7,687) — 0,5 = 0,885

y(-4,88) = 3cos(-4,88) — 0,5 = 5,398

y(-1,403) = 3cos(-1,403) — 0,5 = -2,256

y(1,403) = 3cos(1,403) — 0,5 = 2,256

y(4,88) = 3cos(4,88) — 0,5 = -5,398

y(7,687) = 3cos(7,687) — 0,5 = -0,885

Видно, что на интервале [-9; 9] наибольшее значение функция имеет при x = -4,88:

x = -4,88, у = 5,398,

а наименьшее - при х = 4,88:

x = 4,88, у = -5,398.

На интервале [-6; -3] мы имеем только одну критическую точку: х = -4,88. Значение функции при х = -4,88 равно у = 5,398.

Находим значение функции на концах интервала:

y(-6) = 3cos(-6) — 0,5 = 3,838

y(-3) = 3cos(-3) — 0,5 = 1,077

На интервале [-6; -3] имеем наибольшее значение функции

у = 5,398 при x = -4,88

наименьшее значение —

у = 1,077 при x = -3

Как найти точки перегиба графика функции и определить стороны выпуклости и вогнутости?

Чтобы найти все точки перегиба линии y = f(x), надо найти вторую производную, приравнять её к нулю (решить уравнение) и испытать все те значения х, для которых вторая производная равна нулю, бесконечна или не существует. Если при переходе через одно из этих значений вторая производная меняет знак, то график функции имеет в этой точке перегиб. Если же не меняет, то перегиба нет.

Корни уравнения f ? (x) = 0, а также возможные точки разрыва функции и второй производной разбивают область определения функции на ряд интервалов. Выпуклость на каждом их интервалов определяется знаком второй производной. Если вторая производная в точке на исследуемом интервале положительна, то линия y = f(x) обращена здесь вогнутостью кверху, а если отрицательна - то книзу.

Как найти экстремумы функции двух переменных?

Чтобы найти экстремумы функции f(x,y), дифференцируемой в области её задания, нужно:

1) найти критические точки, а для этого — решить систему уравнений

fх? (x,y) = 0, fу? (x,y) = 0

2) для каждой критической точки Р0(a;b) исследовать, остается ли неизменным знак разности

для всех точек (х;у), достаточно близких к Р0. Если разность сохраняет положительный знак, то в точке Р0 имеем минимум, если отрицательный - то максимум. Если разность не сохраняет знака, то в точке Р0 экстремума нет.

Аналогично определяют экстремумы функции при большем числе аргументов.



Какой официальный сайт певицы Мики Ньютон и её группы
Новое украинское чудо - Мика Ньютон! Это группа из 5 человек, играющая поп-рок, наслаждающаяся жизнью, дарящая драйв и позитивно смотрящая на эту жизнь. Собрались ребята в Киеве, где в настоящий момент и обитают. Ребята ни в какую не соглашаются со стандартными устоями в музыке и жизни, открывая своё новое звучание и ломая всевозможные стандарты. Лидер коллектива -

Как перевести миллилитры в кубические метры
Основной единицей длины в системе СИ является метр. Исходя из этого, основной единицей объёма следует считать кубический метр, или, как его ещё называют, кубометр или куб. Это — объём куба с ребрами, равными одному метру. Однако, на практике выражать объём именно в кубометрах удобно не всегда. Например, объём комнаты в кубических метрах выражать удобно: умножили длину ко

Какая калорийность манной крупы
Калорийность продуктов питания, таблица калорийности. Потребность человека в энергии измеряется в килокалориях (ккал). Слово «калория» пришло из латинского языка и означает «тепло». В физике калориями измеряется энергия. Одна килокалория - это такое количество энергии,

Какие есть этапы развития реализма в литературе
Реализм (лат. вещественный, действительный) — направление в литературе и искусстве, ставящее целью правдивое воспроизведение действительности в её типических чертах. Общие признаки: Художественное изображение жизни в образах, соответствующее сути явлений самой жизни. Реальность является средством познания человеком себя и окружающего мира. Типизация

Какова связь между берклием и 117-м элементом таблицы Менделеева
Берклий, Berkelium, Bk — 97-й элемент таблицы Менделеева.Открыт в декабре 1949 г. Томпсоном, Гиорсо и Сиборгом в Калифорнийском университете в Беркли. При облучении 241Am альфа-частицами они получили изотоп беркелия 243Вk. Поскольку Bk обладает структурным сходством с тербием, получившим свое название от имени г. Иттерби в

Чем прославился Ярослав Мудрый
Ярослав Мудрый (980-1054), великий князь киевский (1019). Сын Владимира I Святославовича. Изгнал Святополка I Окаянного, боролся с братом Мстиславом, разделил с ним государство (1025), в 1035 г. вновь объединил его. Рядом побед обезопасил южные и западные границы Руси. Установил династические связи с многими странами Ев

Как появилась традиция кричать на свадьбе "Горько!"
Давным-давно появилась традиция кричать во время свадебного застолья: «Горько!», вынуждая молодоженов встать со своих мест и поцеловаться. Сегодня многие даже не догадываются, в чем же заключается смысл этого обряда.В старину на свадьбах кричали «Горько!», давая понять, что вино в чашах якобы несладкое. А

Каковы симптомы ларингита
Ларингит (от др.-греч. λ?ρυγξ — гортань) — воспаление гортани, связанное, как правило, с простудным заболеванием либо с такими инфекционными заболеваниями, как корь, скарлатина, коклюш. Развитию заболевания способствуют переохлаждение, дыхание через рот, запылённый

Определяется ли род и склонение у существительных, имеющих только форму множественного числа
Число — это грамматическая категория, выражающая количественную характеристику предмета. 1. Большинство имён существительных изменяется по числам, т.е. имеет две формы — единственного и множественного числа. В форме единственного числа существительное обозначает один предмет, в форме множественного числа — несколько предметов:

Чем полезна русская каша
Гречневая каша Гречка - крупа особенная. Из нее, получается, пожалуй, одна из самых полезных каш. Недаром мы называем ее первой. Гречка содержит клетчатку, целый спектр витаминов — Е, РР, В1, В2, фолиевые и органические кислоты, а так же большой процент крахмала, способствующего попаданию в организм нужного количества нео


Интерактивную карту города Архангельска можно посмотреть на следующих сайтах: Карта1 - спутниковая и стандартная карта;Карта2 - стандартная карта (1:350 000); Карта3 - есть названия улиц, номера домов, возможен поиск по улице;Карта4 - карта с названиями улицКарта5 - интерактивная карта города;Карта6 - интерактивная карта города.

Точка экстремума функции - это точка области определения функции , в которой значение функции принимает минимальное или максимальное значение. Значения функции в этих точках называются экстремумами (минимумом и максимумом) функции .

Определение . Точка x 1 области определения функции f (x ) называется точкой максимума функции , если значение функции в этой точке больше значений функции в достаточно близких к ней точках, расположенных справа и слева от неё (то есть выполняется неравенство f (x 0 ) > f (x 0 + Δx ) x 1 максимум.

Определение . Точка x 2 области определения функции f (x ) называется точкой минимума функции , если значение функции в этой точке меньше значений функции в достаточно близких к ней точках, расположенных справа и слева от неё (то есть выполняется неравенство f (x 0 ) < f (x 0 + Δx ) ). В этом случае говорят, что функция имеет в точке x 2 минимум.

Допустим, точка x 1 - точка максимума функции f (x ) . Тогда в интервале до x 1 функция возрастает , поэтому производная функции больше нуля (f "(x ) > 0 ), а в интервале после x 1 функция убывает, следовательно, и производная функции меньше нуля (f "(x ) < 0 ). Тогда в точке x 1

Допустим также, что точка x 2 - точка минимума функции f (x ) . Тогда в интервале до x 2 функция убывает, а производная функции меньше нуля (f "(x ) < 0 ), а в интервале после x 2 функция возрастает, а производная функции больше нуля (f "(x ) > 0 ). В этом случае также в точке x 2 производная функции равна нулю или не существует.

Теорема Ферма (необходимый признак существования экстремума функции) . Если точка x 0 - точка экстремума функции f (x ) , то в этой точке производная функции равна нулю (f "(x ) = 0 ) или не существует.

Определение . Точки, в которых производная функции равна нулю или не существует, называются критическими точками .

Пример 1. Рассмотрим функцию .

В точке x = 0 производная функции равна нулю, следовательно, точка x = 0 является критической точкой. Однако, как видно на графике функции, она возрастает во всей области определения, поэтому точка x = 0 не является точкой экстремума этой функции.

Таким образом, условия о том, что производная функции в точке равна нулю или не существует, являются необходимыми условиями экстремума, но не достаточными, поскольку можно привести и другие примеры функций, для которых эти условия выполняются, но экстремума в соответствующей точке функция не имеет. Поэтому нужно располагать достаточными признаками , позволяющими судить, имеется ли в конкретной критической точке экстремум и какой именно - максимум или минимум.

Теорема (первый достаточный признак существования экстремума функции). Критическая точка x 0 f (x ) , если при переходе через эту точку производная функции меняет знак, причём, если знак меняется с "плюса" на "минус", то точкой максимума, а если с "минуса" на "плюс", то точкой минимума.

Если же вблизи точки x 0 , слева и справа от неё, производная сохраняет знак, то это означает, что функция либо только убывает, либо только возрастает в некоторой окрестности точки x 0 . В этом случае в точке x 0 экстремума нет.

Итак, чтобы определить точки экстремума функции, требуется выполнить следующее :

  1. Найти производную функции.
  2. Приравнять производную нулю и определить критические точки.
  3. Мысленно или на бумаге отметить критические точки на числовой оси и определить знаки производной функции в полученных интервалах. Если знак производной меняется с "плюса" на "минус", то критическая точка является точкой максимума, а если с "минуса" на "плюс", то точкой минимума.
  4. Вычислить значение функции в точках экстремума.

Пример 2. Найти экстремумы функции .

Решение. Найдём производную функции:

Приравняем производную нулю, чтобы найти критические точки:

.

Так как для любых значений "икса" знаменатель не равен нулю, то приравняем нулю числитель:

Получили одну критическую точку x = 3 . Определим знак производной в интервалах, разграниченных этой точкой:

в интервале от минус бесконечности до 3 - знак минус, то есть функция убывает,

в интервале от 3 до плюс бесконечности - знак плюс, то есть функция возрастает.

То есть, точка x = 3 является точкой минимума.

Найдём значение функции в точке минимума:

Таким образом, точка экстремума функции найдена: (3; 0) , причём она является точкой минимума.

Теорема (второй достаточный признак существования экстремума функции). Критическая точка x 0 является точкой экстремума функции f (x ) , если вторая производная функции в этой точке не равна нулю (f ""(x ) ≠ 0 ), причём, если вторая производная больше нуля (f ""(x ) > 0 ), то точкой максимума, а если вторая производная меньше нуля (f ""(x ) < 0 ), то точкой минимума.

Замечание 1. Если в точке x 0 обращаются в нуль и первая, и вторая производные, то в этой точке нельзя судить о наличии экстремума на основании второго достаточного признака. В этом случае нужно воспользоваться первым достаточным признаком экстремума функции.

Замечание 2. Второй достаточный признак экстремума функции неприменим и тогда, когда в стационарной точке первая производная не существует (тогда не существует и вторая производная). В этом случае также нужно вопользоваться первым достаточным признаком экстремума функции.

Локальный характер экстремумов функции

Из приведённых определений следует, что экстремум функции имеет локальный характер - это наибольшее и наименьшее значение функции по сравнению с близлежайшими значениями.

Предположим, вы рассматриваете свои заработки в отрезке времени протяжённостью в один год. Если в мае вы заработали 45 000 рублей, а в апреле 42 000 рублей и в июне 39 000 рублей, то майский заработок - максимум функции заработка по сравнению с близлежайшими значениями. Но в октябре вы заработали 71 000 рублей, в сентябре 75 000 рублей, а в ноябре 74 000 рублей, поэтому октябрьский заработок - минимум функции заработка по сравнению с близлежашими значениями. И вы легко видите, что максимум среди значений апреля-мая-июня меньше минимума сентября-октября-ноября.

Говоря обобщённо, на промежутке функция может иметь несколько экстремумов, причём может оказаться, что какой-либо минимум функции больше какого-либо максимума. Так, для функции изображённой на рисунке выше, .

То есть не следует думать, что максимум и минимум функции являются, соответственно, её наибольшим и наименьшим значениями на всём рассматриваемом отрезке. В точке максимума функция имеет наибольшее значение лишь по сравнению с теми значениями, которые она имеет во всех точках, достаточно близких к точке максимума, а в точке минимума - наименьшее значение лишь по сравнению с теми значениями, которые она имеет во всех точках, достаточно близких к точке минимума.

Поэтому можно уточнить приведённое выше понятие точек экстремума функции и называть точки минимума точками локального минимума, а точки максимума - точками локального максимума.

Ищем экстремумы функции вместе

Пример 3.

Решение.Функция определена и непрерывна на всей числовой прямой. Её производная существует также на всей числовой прямой. Поэтому в данном случае критическими точками служат лишь те, в которых , т.е. , откуда и . Критическими точками и разбивают всю область определения функции на три интервала монотонности: . Выберем в каждой из них по одной контрольной точке и найдём знак производной в этой точке.

Для интервала контрольной точкой может служить : находим . Взяв в интервале точку , получим , а взяв в интервале точку , имеем . Итак, в интервалах и , а в интервале . Согласно первому достаточному признаку экстремума, в точке экстремума нет (так как производная сохраняет знак в интервале ), а в точке функция имеет минимум (поскольку производная при переходе через эту точку меняет знак с минуса на плюс). Найдём соответствующие значения функции: , а . В интервале функция убывает, так как в этом интервале , а в интервале возрастает, так как в этом интервале .

Чтобы уточнить построение графика, найдём точки пересечения его с осями координат. При получим уравнение , корни которого и , т. е. найдены две точки (0; 0) и (4; 0) графика функции. Используя все полученные сведения, строим график (см. в начале примера).

Пример 4. Найти экстремумы функции и построить её график.

Областью определения функции является вся числовая прямая, кроме точки , т.е. .

Для сокращения исследования можно воспользоваться тем, что данная функция чётная, так как . Поэтому её график симметричен относительно оси Oy и исследование можно выполнить только для интервала .

Находим производную и критические точки функции:

1) ;

2) ,

но функция терпит разрыв в этой точке, поэтому она не может быть точкой экстремума.

Таким образом, заданная функция имеет две критические точки: и . Учитывая чётность функции, проверим по второму достаточному признаку экстремума только точку . Для этого найдём вторую производную и определим её знак при : получим . Так как и , то является точкой минимума функции, при этом .

Чтобы составить более полное представление о графике функции, выясним её поведение на границах области определения:

(здесь символом обозначено стремление x к нулю справа, причём x остаётся положительным; аналогично означает стремление x к нулю слева, причём x остаётся отрицательным). Таким образом, если , то . Далее, находим

,

т.е. если , то .

Точек пересечения с осями график функции не имеет. Рисунок - в начале примера.

Продолжаем искать экстремумы функции вместе

Пример 8. Найти экстремумы функции .

Решение. Найдём область определения функции. Так как должно выполняться неравенство , то из получаем .

Найдём первую производную функции:

Найдём критические точки функции.