18.02.2019

Можно ли контур заземления соединить с железным забором или каркасом терраски? Переносные заземления и ограждения


УТВЕРЖДЕНО
Министерством энергетики
Российской Федерации

1.7.80. Не допускается применять УЗО , реагирующие на дифференциальный ток, в четырехпроводных трехфазных цепях (система TN-C ). В случае необходимости применения УЗО для защиты отдельных электроприемников, получающих питание от системы TN-C , защитный РЕ -проводник электроприемника должен быть подключен к PEN -проводнику цепи, питающей электроприемник, до защитно-коммутационного аппарата.

1.7.81. В системе IT время автоматического отключения питания при двойном замыкании на открытые проводящие части должно соответствовать табл. 1.7.2.

Таблица 1.7.2

Наибольшее допустимое время защитного автоматического отключения для системы IT

1.7.82. Основная система уравнивания потенциалов в электроустановках до 1 кВ должна соединять между собой следующие проводящие части (рис. 1.7.7):

1) нулевой защитный РЕ - или РЕN - проводник питающей линии в системе TN ;

2) заземляющий проводник, присоединенный к заземляющему устройству электроустановки, в системах IT и ТТ ;

3) заземляющий проводник, присоединенный к заземлителю повторного заземления на вводе в здание (если есть заземлитель);

4) металлические трубы коммуникаций, входящих в здание: горячего и холодного водоснабжения, канализации, отопления, газоснабжения и т.п.

Если трубопровод газоснабжения имеет изолирующую вставку на вводе в здание, к основной системе уравнивания потенциалов присоединяется только та часть трубопровода, которая находится относительно изолирующей вставки со стороны здания;

5) металлические части каркаса здания;

6) металлические части централизованных систем вентиляции и кондиционирования. При наличии децентрализованных систем вентиляции и кондиционирования металлические воздуховоды следует присоединять к шине РЕ щитов питания вентиляторов и кондиционеров;

Рис. 1.7.7. Система уравнивания потенциалов в здании:

М - открытая проводящая часть; С1 - металлические трубы водопровода, входящие в здание; С2 — металлические трубы канализации, входящие в здание; С3 — металлические трубы газоснабжения с изолирующей вставкой на вводе, входящие в здание; С4 - воздуховоды вентиляции и кондиционирования; С5 - система отопления; С6 - металлические водопроводные трубы в ванной комнате; С7 - металлическая ванна; С8 — сторонняя проводящая часть в пределах досягаемости от открытых проводящих частей; С9 — арматура железобетонных конструкций; ГЗШ - главная заземляющая шина; Т1 - естественный заземлитель; Т2 - заземлитель молниезащиты (если имеется); 1 - нулевой защитный проводник; 2 - проводник основной системы уравнивания потенциалов; 3 - проводник дополнительной системы уравнивания потенциалов; 4 — токоотвод системы молниезащиты; 5 — контур (магистраль) рабочего заземления в помещении информационного вычислительного оборудования; 6 — проводник рабочего (функционального) заземления; 7 - проводник уравнивания потенциалов в системе рабочего (функционального) заземления; 8 - заземляющий проводник

7) заземляющее устройство системы молниезащиты 2-й и 3-й категорий;

8) заземляющий проводник функционального (рабочего) заземления, если такое имеется и отсутствуют ограничения на присоединение сети рабочего заземления к заземляющему устройству защитного заземления;

9) металлические оболочки телекоммуникационных кабелей.

Проводящие части, входящие в здание извне, должны быть соединены как можно ближе к точке их ввода в здание.

Для соединения с основной системой уравнивания потенциалов все указанные части должны быть присоединены к главной заземляющей шине (1.7.119-1.7.120) при помощи проводников системы уравнивания потенциалов.

1.7.83. Система дополнительного уравнивания потенциалов должна соединять между собой все одновременно доступные прикосновению открытые проводящие части стационарного электрооборудования и сторонние проводящие части, включая доступные прикосновению металлические части строительных конструкций здания, а также нулевые защитные проводники в системе TN и защитные заземляющие проводники в системах IT и ТТ , включая защитные проводники штепсельных розеток.

Для уравнивания потенциалов могут быть использованы специально предусмотренные проводники либо открытые и сторонние проводящие части, если они удовлетворяют требованиям 1.7.122 к защитным проводникам в отношении проводимости и непрерывности электрической цепи.

1.7.84. Защита при помощи двойной или усиленной изоляции может быть обеспечена применением электрооборудования класса II или заключением электрооборудования, имеющего только основную изоляцию токоведущих частей, в изолирующую оболочку.

Проводящие части оборудования с двойной изоляцией не должны быть присоединены к защитному проводнику и к системе уравнивания потенциалов.

1.7.85. Защитное электрическое разделение цепей следует применять, как правило, для одной цепи.

Наибольшее рабочее напряжение отделяемой цепи не должно превышать 500 В.

Питание отделяемой цепи должно быть выполнено от разделительного трансформатора, соответствующего ГОСТ 30030 «Трансформаторы разделительные и безопасные разделительные трансформаторы», или от другого источника, обеспечивающего равноценную степень безопасности.

Токоведущие части цепи, питающейся от разделительного трансформатора, не должны иметь соединений с заземленными частями и защитными проводниками других цепей.

Проводники цепей, питающихся от разделительного трансформатора, рекомендуется прокладывать отдельно от других цепей. Если это невозможно, то для таких цепей необходимо использовать кабели без металлической оболочки, брони, экрана или изолированные провода, проложенные в изоляционных трубах, коробах и каналах при условии, что номинальное напряжение этих кабелей и проводов соответствует наибольшему напряжению совместно проложенных цепей, а каждая цепь защищена от сверхтоков.

Если от разделительного трансформатора питается только один электроприемник, то его открытые проводящие части не должны быть присоединены ни к защитному проводнику, ни к открытым проводящим частям других цепей.

Допускается питание нескольких электроприемников от одного разделительного трансформатора при одновременном выполнении следующих условий:

1) открытые проводящие части отделяемой цепи не должны иметь электрической связи с металлическим корпусом источника питания;

2) открытые проводящие части отделяемой цепи должны быть соединены между собой изолированными незаземленными проводниками местной системы уравнивания потенциалов, не имеющей соединений с защитными проводниками и открытыми проводящими частями других цепей;

3) все штепсельные розетки должны иметь защитный контакт, присоединенный к местной незаземленной системе уравнивания потенциалов;

4) все гибкие кабели, за исключением питающих оборудование класса II, должны иметь защитный проводник, применяемый в качестве проводника уравнивания потенциалов;

5) время отключения устройством защиты при двухфазном замыкании на открытые проводящие части не должно превышать время, указанное в табл. 1.7.2.

1.7.86. Изолирующие (непроводящие) помещения, зоны и площадки могут быть применены в электроустановках напряжением до 1 кВ , когда требования к автоматическому отключению питания не могут быть выполнены, а применение других защитных мер невозможно либо нецелесообразно.

Сопротивление относительно локальной земли изолирующего пола и стен таких помещений, зон и площадок в любой точке должно быть не менее:

50 кОм при номинальном напряжении электроустановки до 500 В включительно, измеренное мегаомметром на напряжение 500 В ;

100 кОм при номинальном напряжении электроустановки более 500 В , измеренное мегаомметром на напряжение 1000 В .

Если сопротивление в какой-либо точке меньше указанных, такие помещения, зоны, площадки не должны рассматриваться в качестве меры защиты от поражения электрическим током.

Для изолирующих (непроводящих) помещений, зон, площадок допускается использование электрооборудования класса 0 при соблюдении, по крайней мере, одного из трех следующих условий:

1) открытые проводящие части удалены одна от другой и от сторонних проводящих частей не менее чем на 2 м . Допускается уменьшение этого расстояния вне зоны досягаемости до 1,25 м ;

2) открытые проводящие части отделены от сторонних проводящих частей барьерами из изоляционного материала. При этом расстояния, не менее указанных в пп. 1, должны быть обеспечены с одной стороны барьера;

3) сторонние проводящие части покрыты изоляцией, выдерживающей испытательное напряжение не менее 2 кВ в течение 1 мин .

В изолирующих помещениях (зонах) не должен предусматриваться защитный проводник.

Должны быть предусмотрены меры против заноса потенциала на сторонние проводящие части помещения извне.

Пол и стены таких помещений не должны подвергаться воздействию влаги.

1.7.87. При выполнении мер защиты в электроустановках напряжением до 1 кВ классы применяемого электрооборудования по способу защиты человека от поражения электрическим током по ГОСТ 12.2.007.0 «ССБТ. Изделия электротехнические. Общие требования безопасности» следует принимать в соответствии с табл. 1.7.3.

Таблица 1.7.3

Применение электрооборудования в электроустановках напряжением до 1 кВ

Класс
по ГОСТ
12.2.007.0
Р МЭК536
Маркировка Назначение защиты Условия применения электрооборудования в электроустановке
Класс 0 - При косвенном прикосновении 1. Применение в непроводящих помещениях.
2. Питание от вторичной обмотки разделительного трансформатора только одного электроприемника
Класс I Защитный зажим знак или буквы РЕ , или желто-зеленые полосы При косвенном прикосновении Присоединение заземляющего зажима электрооборудования к защитному проводнику электроустановки
Класс II Знак При косвенном прикосновении Независимо от мер защиты, принятых в электроустановке
Класс III Знак От прямого и косвенного прикосновений Питание от безопасного разделительного трансформатора

кВ в сетях с эффективно заземленной нейтралью

1.7.88. Заземляющие устройства электроустановок напряжением выше 1 кВ в сетях с эффективно заземленной нейтралью следует выполнять с соблюдением требований либо к их сопротивлению (1.7.90), либо к напряжению прикосновения (1.7.91), а также с соблюдением требований к конструктивному выполнению (1.7.92-1.7.93) и к ограничению напряжения на заземляющем устройстве (1.7.89). Требования 1.7.89-1.7.93 не распространяются на заземляющие устройства опор ВЛ.

1.7.89. Напряжение на заземляющем устройстве при стекании с него тока замыкания на землю не должно, как правило, превышать 10 кВ . Напряжение выше 10 кВ допускается на заземляющих устройствах, с которых исключен вынос потенциалов за пределы зданий и внешних ограждений электроустановок. При напряжении на заземляющем устройстве более 5 кВ должны быть предусмотрены меры по защите изоляции отходящих кабелей связи и телемеханики и по предотвращению выноса опасных потенциалов за пределы электроустановки.

1.7.90. Заземляющее устройство, которое выполняется с соблюдением требований к его сопротивлению, должно иметь в любое время года сопротивление не более 0,5 Ом с учетом сопротивления естественных и искусственных заземлителей.

В целях выравнивания электрического потенциала и обеспечения присоединения электрооборудования к заземлителю на территории, занятой оборудованием, следует прокладывать продольные и поперечные горизонтальные заземлители и объединять их между собой в заземляющую сетку.

Продольные заземлители должны быть проложены вдоль осей электрооборудования со стороны обслуживания на глубине 0,5-0,7 м от поверхности земли и на расстоянии 0,8-1,0 м от фундаментов или оснований оборудования. Допускается увеличение расстояний от фундаментов или оснований оборудования до 1,5 м с прокладкой одного заземлителя для двух рядов оборудования, если стороны обслуживания обращены друг к другу, а расстояние между основаниями или фундаментами двух рядов не превышает 3,0 м .

Поперечные заземлители следует прокладывать в удобных местах между оборудованием на глубине 0,5-0,7 м от поверхности земли. Расстояние между ними рекомендуется принимать увеличивающимся от периферии к центру заземляющей сетки. При этом первое и последующие расстояния, начиная от периферии, не должны превышать соответственно 4,0; 5,0; 6,0; 7,5; 9,0; 11,0; 13,5; 16,0; 20,0 м . Размеры ячеек заземляющей сетки, примыкающих к местам присоединения нейтралей силовых трансформаторов и короткозамыкателей к заземляющему устройству, не должны превышать 6 х 6 м .

Горизонтальные заземлители следует прокладывать по краю территории, занимаемой заземляющим устройством так, чтобы они в совокупности образовывали замкнутый контур.

Если контур заземляющего устройства располагается в пределах внешнего ограждения электроустановки, то у входов и въездов на ее территорию следует выравнивать потенциал путем установки двух вертикальных заземлителей, присоединенных к внешнему горизонтальному заземлителю напротив входов и въездов. Вертикальные заземлители должны быть длиной 3-5 м , а расстояние между ними должно быть равно ширине входа или въезда.

1.7.91. Заземляющее устройство, которое выполняется с соблюдением требований, предъявляемых к напряжению прикосновения, должно обеспечивать в любое время года при стекании с него тока замыкания на землю значения напряжений прикосновения, не превышающие нормированных (см. ГОСТ 12.1.038). Сопротивление заземляющего устройства при этом определяется по допустимому напряжению на заземляющем устройстве и току замыкания на землю.

При определении значения допустимого напряжения прикосновения в качестве расчетного времени воздействия следует принимать сумму времени действия защиты и полного времени отключения выключателя. При определении допустимых значений напряжений прикосновения у рабочих мест, где при производстве оперативных переключений могут возникнуть КЗ на конструкции, доступные для прикосновения производящему переключения персоналу, следует принимать время действия резервной защиты, а для остальной территории - основной защиты.

Примечание. Рабочее место следует понимать как место оперативного обслуживания электрических аппаратов.

Размещение продольных и поперечных горизонтальных заземлителей должно определяться требованиями ограничения напряжений прикосновения до нормированных значений и удобством присоединения заземляемого оборудования. Расстояние между продольными и поперечными горизонтальными искусственными заземлителями не должно превышать 30 м , а глубина их заложения в грунт должна быть не менее 0,3 м . Для снижения напряжения прикосновения у рабочих мест в необходимых случаях может быть выполнена подсыпка щебня слоем толщиной 0,1-0,2 м .

В случае объединения заземляющих устройств разных напряжений в одно общее заземляющее устройство напряжение прикосновения должно определяться по наибольшему току короткого замыкания на землю объединяемых ОРУ .

1.7.92. При выполнении заземляющего устройства с соблюдением требований, предъявляемых к его сопротивлению или к напряжению прикосновения, дополнительно к требованиям 1.7.90-1.7.91 следует:

прокладывать заземляющие проводники, присоединяющие оборудование или конструкции к заземлителю, в земле на глубине не менее 0,3 м ;

прокладывать продольные и поперечные горизонтальные заземлители (в четырех направлениях) вблизи мест расположения заземляемых нейтралей силовых трансформаторов, короткозамыкателей.

При выходе заземляющего устройства за пределы ограждения электроустановки горизонтальные заземлители, находящиеся вне территории электроустановки, следует прокладывать на глубине не менее 1 м . Внешний контур заземляющего устройства в этом случае рекомендуется выполнять в виде многоугольника с тупыми или скругленными углами.

1.7.93. Внешнюю ограду электроустановок не рекомендуется присоединять к заземляющему устройству.

Если от электроустановки отходят ВЛ 110 кВ и выше, то ограду следует заземлить с помощью вертикальных заземлителей длиной 2-3 м , установленных у стоек ограды по всему ее периметру через 20-50 м . Установка таких заземлителей не требуется для ограды с металлическими стойками и с теми стойками из железобетона, арматура которых электрически соединена с металлическими звеньями ограды.

Для исключения электрической связи внешней ограды с заземляющим устройством расстояние от ограды до элементов заземляющего устройства, расположенных вдоль нее с внутренней, внешней или с обеих сторон, должно быть не менее 2 м . Выходящие за пределы ограды горизонтальные заземлители, трубы и кабели с металлической оболочкой или броней и другие металлические коммуникации должны быть проложены посередине между стойками ограды на глубине не менее 0,5 м . В местах примыкания внешней ограды к зданиям и сооружениям, а также в местах примыкания к внешней ограде внутренних металлических ограждений должны быть выполнены кирпичные или деревянные вставки длиной не менее 1 м .

Питание электроприемников, установленных на внешней ограде, следует осуществлять от разделительных трансформаторов. Эти трансформаторы не допускается устанавливать на ограде. Линия, соединяющая вторичную обмотку разделительного трансформатора с электроприемником, расположенным на ограде, должна быть изолирована от земли на расчетное значение напряжения на заземляющем устройстве.

Если выполнение хотя бы одного из указанных мероприятий невозможно, то металлические части ограды следует присоединить к заземляющему устройству и выполнить выравнивание потенциалов так, чтобы напряжение прикосновения с внешней и внутренней сторон ограды не превышало допустимых значений. При выполнении заземляющего устройства по допустимому сопротивлению с этой целью должен быть проложен горизонтальный заземлитель с внешней стороны ограды на расстоянии 1 м от нее и на глубине 1 м . Этот заземлитель следует присоединять к заземляющему устройству не менее чем в четырех точках.

1.7.94. Если заземляющее устройство электроустановки напряжением выше 1 кВ сети с эффективно заземленной нейтралью соединено с заземляющим устройством другой электроустановки при помощи кабеля с металлической оболочкой или броней или других металлических связей, то для выравнивания потенциалов вокруг указанной другой электроустановки или здания, в котором она размещена, необходимо соблюдение одного из следующих условий:

1) прокладка в земле на глубине 1 м и на расстоянии 1 м от фундамента здания или от периметра территории, занимаемой оборудованием, заземлителя, соединенного с системой уравнивания потенциалов этого здания или этой территории, а у входов и у въездов в здание - укладка проводников на расстоянии 1 и 2 м от заземлителя на глубине 1 и 1,5 м соответственно и соединение этих проводников с заземлителем;

2) использование железобетонных фундаментов в качестве заземлителей в соответствии с 1.7.109, если при этом обеспечивается допустимый уровень выравнивания потенциалов. Обеспечение условий выравнивания потенциалов посредством железобетонных фундаментов, используемых в качестве заземлителей, определяется в соответствии с ГОСТ 12.1.030 «Электробезопасность. Защитное заземление, зануление».

Не требуется выполнение условий, указанных в пп. 1 и 2, если вокруг зданий имеются асфальтовые отмостки, в том числе у входов и у въездов. Если у какого-либо входа (въезда) отмостка отсутствует, у этого входа (въезда) должно быть выполнено выравнивание потенциалов путем укладки двух проводников, как указано в пп. 1, или соблюдено условие по пп. 2. При этом во всех случаях должны выполняться требования 1.7.95.

1.7.95. Во избежание выноса потенциала не допускается питание электроприемников, находящихся за пределами заземляющих устройств электроустановок напряжением выше 1 кВ сети с эффективно заземленной нейтралью, от обмоток до 1 кВ с заземленной нейтралью трансформаторов, находящихся в пределах контура заземляющего устройства электроустановки напряжением выше 1 кВ .

При необходимости питание таких электроприемников может осуществляться от трансформатора с изолированной нейтралью на стороне напряжением до 1 кВ по кабельной линии, выполненной кабелем без металлической оболочки и без брони, или по ВЛ .

При этом напряжение на заземляющем устройстве не должно превышать напряжение срабатывания пробивного предохранителя, установленного на стороне низшего напряжения трансформатора с изолированной нейтралью.

Питание таких электроприемников может также осуществляться от разделительного трансформатора. Разделительный трансформатор и линия от его вторичной обмотки к электроприемнику, если она проходит по территории, занимаемой заземляющим устройством электроустановки напряжением выше 1 кВ , должны иметь изоляцию от земли на расчетное значение напряжения на заземляющем устройстве.

Заземляющие устройства электроустановок напряжением выше 1 кВ

1.7.96. В электроустановках напряжением выше 1 кВ сети с изолированной нейтралью сопротивление заземляющего устройства при прохождении расчетного тока замыкания на землю в любое время года с учетом сопротивления естественных заземлителей должно быть

R ≤ 250 / I ,

но не более 10 Ом , где I - расчетный ток замыкания на землю, А .

В качестве расчетного тока принимается:

1) в сетях без компенсации емкостных токов - ток замыкания на землю;

2) в сетях с компенсацией емкостных токов:

для заземляющих устройств, к которым присоединены компенсирующие аппараты, - ток, равный 125 % номинального тока наиболее мощного из этих аппаратов;

для заземляющих устройств, к которым не присоединены компенсирующие аппараты, — ток замыкания на землю, проходящий в данной сети при отключении наиболее мощного из компенсирующих аппаратов.

Расчетный ток замыкания на землю должен быть определен для той из возможных в эксплуатации схем сети, при которой этот ток имеет наибольшее значение.

1.7.97. При использовании заземляющего устройства одновременно для электроустановок напряжением до 1 кВ с изолированной нейтралью должны быть выполнены условия 1.7.104.

При использовании заземляющего устройства одновременно для электроустановок напряжением до 1 кВ с глухозаземленной нейтралью сопротивление заземляющего устройства должно быть не более указанного в 1.7.101 либо к заземляющему устройству должны быть присоединены оболочки и броня не менее двух кабелей на напряжение до или выше 1 кВ или обоих напряжений, при общей протяженности этих кабелей не менее 1 км .

1.7.98. Для подстанций напряжением 6-10/0,4 кВ должно быть выполнено одно общее заземляющее устройство, к которому должны быть присоединены:

1) нейтраль трансформатора на стороне напряжением до 1 кВ ;

2) корпус трансформатора;

3) металлические оболочки и броня кабелей напряжением до 1 кВ и выше;

4) открытые проводящие части электроустановок напряжением до 1 кВ и выше;

5) сторонние проводящие части

Вокруг площади, занимаемой подстанцией, на глубине не менее 0,5 м и на расстоянии не более 1 м от края фундамента здания подстанции или от края фундаментов открыто установленного оборудования должен быть проложен замкнутый горизонтальный заземлитель (контур), присоединенный к заземляющему устройству.

1.7.99. Заземляющее устройство сети напряжением выше 1 кВ с изолированной нейтралью, объединенное с заземляющим устройством сети напряжением выше 1 кВ с эффективно заземленной нейтралью в одно общее заземляющее устройство, должно удовлетворять также требованиям 1.7.89-1.7.90.

кВ в сетях с глухозаземленной нейтралью

1.7.100. В электроустановках с глухозаземленной нейтралью нейтраль генератора или трансформатора трехфазного переменного тока, средняя точка источника постоянного тока, один из выводов источника однофазного тока должны быть присоединены к заземлителю при помощи заземляющего проводника.

Искусственный заземлитель, предназначенный для заземления нейтрали, как правило, должен быть расположен вблизи генератора или трансформатора. Для внутрицеховых подстанций допускается располагать заземлитель около стены здания.

Если фундамент здания, в котором размещается подстанция, используется в качестве естественных заземлителей, нейтраль трансформатора следует заземлять путем присоединения не менее чем к двум металлическим колоннам или к закладным деталям, приваренным к арматуре не менее двух железобетонных фундаментов.

При расположении встроенных подстанций на разных этажах многоэтажного здания заземление нейтрали трансформаторов таких подстанций должно быть выполнено при помощи специально проложенного заземляющего проводника. В этом случае заземляющий проводник должен быть дополнительно присоединен к колонне здания, ближайшей к трансформатору, а его сопротивление учтено при определении сопротивления растеканию заземляющего устройства, к которому присоединена нейтраль трансформатора.

Во всех случаях должны быть приняты меры по обеспечению непрерывности цепи заземления и защите заземляющего проводника от механических повреждений.

Если в PEN -проводнике, соединяющем нейтраль трансформатора или генератора с шиной PEN распределительного устройства напряжением до 1 кВ , установлен трансформатор тока, то заземляющий проводник должен быть присоединен не к нейтрали трансформатора или генератора непосредственно, а к PEN -проводнику, по возможности сразу за трансформатором тока. В таком случае разделение PEN -проводника на РЕ - и N -проводники в системе TN-S должно быть выполнено также за трансформатором тока. Трансформатор тока следует размещать как можно ближе к выводу нейтрали генератора или трансформатора.

1.7.101. Сопротивление заземляющего устройства, к которому присоединены нейтрали генератора или трансформатора или выводы источника однофазного тока, в любое время года должно быть не более 2, 4 и 8 Ом В В источника однофазного тока. Это сопротивление должно быть обеспечено с учетом использования естественных заземлителей, а также заземлителей повторных заземлений PEN - или PE -проводника ВЛ напряжением до 1 кВ при количестве отходящих линий не менее двух. Сопротивление заземлителя, расположенного в непосредственной близости от нейтрали генератора или трансформатора или вывода источника однофазного тока, должно быть не более 15, 30 и 60 Ом соответственно при линейных напряжениях 660, 380 и 220 В источника трехфазного тока или 380, 220 и 127 В источника однофазного тока.

При удельном сопротивлении земли ρ > 100 Ом м допускается увеличивать указанные нормы в 0,01 ρ раз, но не более десятикратного.

1.7.102. На концах ВЛ или ответвлений от них длиной более 200 м , а также на вводах ВЛ к электроустановкам, в которых в качестве защитной меры при косвенном прикосновении применено автоматическое отключение питания, должны быть выполнены повторные заземления PEN -проводника. При этом в первую очередь следует использовать естественные заземлители, например, подземные части опор, а также заземляющие устройства, предназначенные для грозовых перенапряжений (см. гл. 2.4).

Указанные повторные заземления выполняются, если более частые заземления по условиям защиты от грозовых перенапряжений не требуются.

Повторные заземления PEN -проводника в сетях постоянного тока должны быть выполнены при помощи отдельных искусственных заземлителей, которые не должны иметь металлических соединений с подземными трубопроводами.

Заземляющие проводники для повторных заземлений PEN -проводника должны иметь размеры не менее приведенных в табл. 1.7.4.

Таблица 1.7.4

Наименьшие размеры заземлителей и заземляющих проводников, проложенных в земле

___________
* Диаметр каждой проволоки.

1.7.103. Общее сопротивление растеканию заземлителей (в том числе естественных) всех повторных заземлений PEN -проводника каждой ВЛ в любое время года должно быть не более 5, 10 и 20 Ом соответственно при линейных напряжениях 660, 380 и 220 В источника трехфазного тока или 380, 220 и 127 В источника однофазного тока. При этом сопротивление растеканию заземлителя каждого из повторных заземлений должно быть не более 15, 30 и 60 Ом соответственно при тех же напряжениях

При удельном сопротивлении земли ρ > 100 Ом·м допускается увеличивать указанные нормы в 0,01 ρ раз, но не более десятикратного.

Заземляющие устройства электроустановок напряжением до 1 кВ в сетях с изолированной нейтралью

1.7.104. Сопротивление заземляющего устройства, используемого для защитного заземления открытых проводящих частей, в системе IT должно соответствовать условию:

R ≤ U пр / I ,

где R - сопротивление заземляющего устройства, Ом ;

U пр - напряжение прикосновения, значение которого принимается равным 50 В (см. также 1.7.53);

I - полный ток замыкания на землю, А .

Как правило, не требуется принимать значение сопротивления заземляющего устройства менее 4 Ом . Допускается сопротивление заземляющего устройства до 10 Ом , если соблюдено приведенное выше условие, а мощность генераторов или трансформаторов не превышает 100 кВ·А , в том числе суммарная мощность генераторов или трансформаторов, работающих параллельно.

Заземляющие устройства в районах с большим удельным сопротивлением земли

1.7.105. Заземляющие устройства электроустановок напряжением выше 1 кВ с эффективно заземленной нейтралью в районах с большим удельным сопротивлением земли, в том числе в районах многолетней мерзлоты, рекомендуется выполнять с соблюдением требований, предъявляемых к напряжению прикосновения (1.7.91).

В скальных структурах допускается прокладывать горизонтальные заземлители на меньшей глубине, чем этого требуют 1.7.91-1.7.93, но не менее чем 0,15 м . Кроме того, допускается не выполнять требуемые 1.7.90 вертикальные заземлители у входов и у въездов.

1.7.106. При сооружении искусственных заземлителей в районах с большим удельным сопротивлением земли рекомендуются следующие мероприятия:

1) устройство вертикальных заземлителей увеличенной длины, если с глубиной удельное сопротивление земли снижается, а естественные углубленные заземлители (например, скважины с металлическими обсадными трубами) отсутствуют;

2) устройство выносных заземлителей, если вблизи (до 2 км ) от электроустановки есть места с меньшим удельным сопротивлением земли;

3) укладка в траншеи вокруг горизонтальных заземлителей в скальных структурах влажного глинистого грунта с последующей трамбовкой и засыпкой щебнем до верха траншеи;

4) применение искусственной обработки грунта с целью снижения его удельного сопротивления, если другие способы не могут быть применены или не дают необходимого эффекта.

1.7.107. В районах многолетней мерзлоты, кроме рекомендаций, приведенных в 1.7.106, следует:

1) помещать заземлители в непромерзающие водоемы и талые зоны;

2) использовать обсадные трубы скважин;

3) в дополнение к углубленным заземлителям применять протяженные заземлители на глубине около 0,5 м , предназначенные для работы в летнее время при оттаивании поверхностного слоя земли;

4) создавать искусственные талые зоны.

1.7.108. В электроустановках напряжением выше 1 кВ , а также до 1 кВ с изолированной нейтралью для земли с удельным сопротивлением более 500 Ом·м , если мероприятия, предусмотренные 1.7.105-1.7.107, не позволяют получить приемлемые по экономическим соображениям заземлители, допускается повысить требуемые настоящей главой значения сопротивлений заземляющих устройств в 0,002 ρ раз, где ρ - эквивалентное удельное сопротивление земли, Ом·м . При этом увеличение требуемых настоящей главой сопротивлений заземляющих устройств должно быть не более десятикратного.

Заземлители

1.7.109. В качестве естественных заземлителей могут быть использованы:

1) металлические и железобетонные конструкции зданий и сооружений, находящиеся в соприкосновении с землей, в том числе железобетонные фундаменты зданий и сооружений, имеющие защитные гидроизоляционные покрытия в неагрессивных, слабоагрессивных и среднеагрессивных средах;

2) металлические трубы водопровода, проложенные в земле;

3) обсадные трубы буровых скважин;

4) металлические шпунты гидротехнических сооружений, водоводы, закладные части затворов и т. п.;

5) рельсовые пути магистральных неэлектрифицированных железных дорог и подъездные пути при наличии преднамеренного устройства перемычек между рельсами;

6) другие находящиеся в земле металлические конструкции и сооружения;

7) металлические оболочки бронированных кабелей, проложенных в земле. Оболочки кабелей могут служить единственными заземлителями при количестве кабелей не менее двух. Алюминиевые оболочки кабелей использовать в качестве заземлителей не допускается.

1.7.110. Не допускается использовать в качестве заземлителей трубопроводы горючих жидкостей, горючих или взрывоопасных газов и смесей и трубопроводов канализации и центрального отопления. Указанные ограничения не исключают необходимости присоединения таких трубопроводов к заземляющему устройству с целью уравнивания потенциалов в соответствии с 1.7.82.

Не следует использовать в качестве заземлителей железобетонные конструкции зданий и сооружений с предварительно напряженной арматурой, однако это ограничение не распространяется на опоры ВЛ и опорные конструкции ОРУ .

Возможность использования естественных заземлителей по условию плотности протекающих по ним токов, необходимость сварки арматурных стержней железобетонных фундаментов и конструкций, приварки анкерных болтов стальных колонн к арматурным стержням железобетонных фундаментов, а также возможность использования фундаментов в сильноагрессивных средах должны быть определены расчетом.

1.7.111. Искусственные заземлители могут быть из черной или оцинкованной стали или медными.

Искусственные заземлители не должны иметь окраски.

Материал и наименьшие размеры заземлителей должны соответствовать приведенным в табл. 1.7.4.

1.7.112. Сечение горизонтальных заземлителей для электроустановок напряжением выше 1 кВ следует выбирать по условию термической стойкости при допустимой температуре нагрева 400 °С (кратковременный нагрев, соответствующий времени действия защиты и отключения выключателя).

В случае опасности коррозии заземляющих устройств следует выполнить одно из следующих мероприятий:

увеличить сечения заземлителей и заземляющих проводников с учетом расчетного срока их службы;

применить заземлители и заземляющие проводники с гальваническим покрытием или медные.

При этом следует учитывать возможное увеличение сопротивления заземляющих устройств, обусловленное коррозией.

Траншеи для горизонтальных заземлителей должны заполняться однородным грунтом, не содержащим щебня и строительного мусора.

Не следует располагать (использовать) заземлители в местах, где земля подсушивается под действием тепла трубопроводов и т.п.

Заземляющие проводники

1.7.113. Сечения заземляющих проводников в электроустановках напряжением до 1 кВ должны соответствовать требованиям 1.7.126 к защитным проводникам.

Наименьшие сечения заземляющих проводников, проложенных в земле, должны соответствовать приведенным в табл. 1.7.4.

Прокладка в земле алюминиевых неизолированных проводников не допускается.

1.7.114. В электроустановках напряжением выше 1 кВ сечения заземляющих проводников должны быть выбраны такими, чтобы при протекании по ним наибольшего тока однофазного КЗ в электроустановках с эффективно заземленной нейтралью или тока двухфазного КЗ в электроустановках с изолированной нейтралью температура заземляющих проводников не превысила 400 °С (кратковременный нагрев, соответствующий полному времени действия защиты и отключения выключателя).

1.7.115. В электроустановках напряжением выше 1 кВ с изолированной нейтралью проводимость заземляющих проводников сечением до 25 мм 2 по меди или равноценное ему из других материалов должна составлять не менее 1/3 проводимости фазных проводников. Как правило, не требуется применение медных проводников сечением более 25 мм 2 , алюминиевых - 35 мм 2 , стальных - 120 мм 2 .

1.7.116. Для выполнения измерений сопротивления заземляющего устройства в удобном месте должна быть предусмотрена возможность отсоединения заземляющего проводника. В электроустановках напряжением до 1 кВ таким местом, как правило, является главная заземляющая шина. Отсоединение заземляющего проводника должно быть возможно только при помощи инструмента.

1.7.117. Заземляющий проводник, присоединяющий заземлитель рабочего (функционального) заземления к главной заземляющей шине в электроустановках напряжением до 1 кВ , должен иметь сечение не менее: медный - 10 мм 2 , алюминиевый - 16 мм 2 , стальной - 75 мм 2 .

1.7.118. У мест ввода заземляющих проводников в здания должен быть предусмотрен опознавательный знак

Главная заземляющая шина

1.7.119. Главная заземляющая шина может быть выполнена внутри вводного устройства электроустановки напряжением до 1 кВ или отдельно от него.

Внутри вводного устройства в качестве главной заземляющей шины следует использовать шину РЕ .

При отдельной установке главная заземляющая шина должна быть расположена в доступном, удобном для обслуживания месте вблизи вводного устройства.

Сечение отдельно установленной главной заземляющей шины должно быть не менее сечения РЕ (PEN )-проводника питающей линии.

Главная заземляющая шина должна быть, как правило, медной. Допускается применение главной заземляющей шины из стали. Применение алюминиевых шин не допускается.

В конструкции шины должна быть предусмотрена возможность индивидуального отсоединения присоединенных к ней проводников. Отсоединение должно быть возможно только с использованием инструмента.

В местах, доступных только квалифицированному персоналу (например, щитовых помещениях жилых домов), главную заземляющую шину следует устанавливать открыто. В местах, доступных посторонним лицам (например, подъездах или подвалах домов), она должна иметь защитную оболочку - шкаф или ящик с запирающейся на ключ дверцей. На дверце или на стене над шиной должен быть нанесен знак

Заземляющие устройства

Внедрение микропроцессорной (МП) аппаратуры на энергообъектах и соответственно необходимость решения проблем электромагнитной совместимости МП аппаратуры требуют адекватной поддержки в виде нормативно-технической документации, регламентирующей решение этих вопросов на этапе проектирования или комплексной реконструкции ПС. Важнейшее место в обеспечении ЭМС МП аппаратуры занимает заземляющее устройство.
Два недавних стандарта ФСК, касающиеся проектирования и обследования подстанционных ЗУ, обсуждают сегодня московские специалисты, привлекая внимание читателей в первую очередь к недостаткам этих документов.

НОВЫЕ СТАНДАРТЫ ФСК ПО ЗАЗЕМЛЯЮЩИМ УСТРОЙСТВАМ ПС 6-750 кВ
Неточности и противоречия

Михаил Матвеев, к.ф.-м.н., генеральный директор
Михаил Кузнецов, к.ф.-м.н., технический директор
Виктор Березовский, главный инженер проекта
ООО «ЭЗОП», г. Москва

Выпущенные в конце 2011 - начале 2012 года стандарты Федеральной сетевой компании СТО 56947007-29.130.15.105-2011 «Методические указания по контролю состояния заземляющих устройств» и СТО 56947007-29.130.15.114-2012 «Руководящие указания по проектированию заземляющих устройств подстанций напряжением 6-750 кВ» призваны были ответить на вопросы: как правильно проектировать ЗУ на энергообъектах при новом строительстве или комплексной реконструкции и как проверять соответствие заземляющих устройств (ЗУ) существующих объектов требованиям электромагнитной совместимости (ЭМС).

Однако указанные документы оказались далеки от идеала. Они содержат неточности, ошибки и противоречат не только ранее выпущенным НТД по ЭМС, но даже и ПУЭ. При этом первый документ вообще получил противоречивый статус: изначально задумывавшийся как редакция РД 153-34.0-20.525-00 (Методические указания по контролю состояния заземляющих устройств электроустановок) , этот документ, с одной стороны, не отменяет РД, а с другой стороны, применим не ко всем объектам электроэнергетики. Таким образом, создается запутанная ситуация, когда для объектов ЕНЭС необходимо будет применять , а для остальных энергообъектов - .

Документ действительно пытается пояснить, как именно проектировать ЗУ с учетом ЭМС, но при этом не ссылается на пока еще не отмененный предшествующий документ по проектированию ЗУ , хотя использует цитаты из этого документа.

Ниже будут приведены примеры ошибок, неточностей и противоречий с действующей НТД рассматриваемых документов .

ОБЩИЕ НЕДОСТАТКИ

На наш взгляд, рассматриваемые документы сведены к перечислению (часто, как мы увидим ниже, искаженному) требований существующих НТД, в первую очередь ПУЭ, и в них дано некоторое разъяснение требований ПУЭ, а также приведены общие слова об отдельных методах измерений и расчетов. В документах отсутствуют или недостаточно подробно рассмотрены ЗУ таких видов РУ, как КРУЭ и ЗРУ. При этом не освещены вопросы, которые волнуют проектировщиков больше всего. Это в первую очередь вопрос: а как, собственно, создать ЗУ, обеспечивающее ЭМС МП аппаратуры? Каков вообще должен быть алгоритм работы проектировщика?

Например, в подробно описан алгоритм проектирования ЗУ. Хотелось бы, чтобы новые документы расширяли и углубляли описываемые в алгоритмы на современном уровне, учитывая требования ЭМС МП аппаратуры. Ведь проектировщик должен четко осознавать всю последовательность шагов по проектированию ЗУ и понимать, какие именно исходные данные ему для этого понадобятся. Так, первым шагом должен быть выбор материала и сечения заземляющих проводников и заземлителей исходя из максимальных значений токов КЗ, времени отключения КЗ и коррозионной опасности. Тогда как мероприятия по снижению импульсных перенапряжений, возникающих при протекании через ЗУ ВЧ-составляющей токов КЗ, должны быть разработаны на завершающей стадии проектирования ЗУ.

При этом требуется освещение всех без исключения вопросов, связанных с проектированием ЗУ, начиная с выбора среднего максимального для ПС размера ячеек сетки ЗУ и заканчивая необходимостью выполнения связи с заземлением проводящих элементов кабельной канализации. Необходимо также рассмотрение вопросов увеличения коэффициента ослабления импульсных помех ЗУ шинами уравнивания потенциалов. Ведь известно, что заземленные проводники, проложенные параллельно вторичным цепям, эффективно ослабляют импульсные помехи, наводимые в цепях при КЗ (ВЧ-составляющая) и молниевых разрядах. От того, какие проводники (сечение, материал) и на каком расстоянии от вторичных цепей будут проложены, где и как они будут соединены с ЗУ, будет зависеть общий коэффициент ослабления импульсных помех.

Однако в эти вопросы не рассмотрены, и алгоритма проектирования ЗУ нет.

Более того, многие аспекты проектирования ЗУ, освещенные ранее, например в , в рассматриваемых документах обсуждаются значительно менее подробно, например, вопросы влияния на сопротивления ЗУ естественных заземлителей и многие другие. А самое главное, в не дается общее видение проблемы, не описан пошагово метод выбора и расчета/измерения параметров ЗУ, как это сделано, например, в , непонятно, зачем именно проводятся те или иные измерения параметров ЗУ и какова роль отдельных измерений в общей работе по проверке ЗУ.

ПРОТИВОРЕЧИЯ С ДЕЙСТВУЮЩЕЙ НТД

Сперва остановимся на наиболее грубых ошибках, заметно осложняющих работу как проектировщикам, так и представителям специализированных организаций, занимающихся экспериментальным и расчетным определением параметров ЗУ ПС.

Максимальная температура проводников
Так, например, в табл. 1 обоих документов приводится требование максимальной температуры «для заземляющих проводников, подсоединенных к аппаратам, - не более 300 о С», а в даже дается ссылка на п. 1.4.16 ПУЭ. При этом авторы СТО забывают, что в ПУЭ температура заземляющих проводников нормируется только в п. 1.7.114 (400 о С), тогда как в п. 1.4.16 нормируется температура нагрева шин, а не заземляющих проводников.

Табл. 1. Сравнение предельно допустимых уровней напряжений прикосновения при аварийном режиме электроустановок напряжением до 1 кВ с глухозаземленной или изолированной нейтралью и выше 1 кВ с изолированной нейтралью

Время воздействия t, с

0,01–0,08

Переменный ток, 50 Гц,
ГОСТ 12.1.038-82

Переменный ток, 50 Гц, по

Температура нагрева, например, кабелей с ПВХ-изоляцией принята равной 160 °С со ссылкой на п. 1.4.16 ПУЭ, тогда как в указанном пункте приведено значение 150 °С.

Допустимые напряжения прикосновения
Если упомянутые выше нарушения влияют в основном на обеспечение бесперебойной работы оборудования, то ошибки в указании допустимых значений напряжений прикосновения оказывают влияние на электробезопасность персонала. Так, в приведены таблицы «Предельно допустимых уровней напряжений прикосновения при аварийном режиме электроустановок напряжением до 1 кВ с глухозаземленной или изолированной нейтралью и выше 1 кВ с изолированной нейтралью», где, со ссылкой на ГОСТ 12.1.038-82 , указаны значения, противоречащие данному ГОСТу.

При этом если для времени отключения выше 0,5 с приведенные напряжения даны с запасом, то для времени отключения менее 0,5 с допустимые значения СТО выше приведенных в ГОСТе, а значит, напряжение прикосновения может привести к поражению током персонала ПС.

Максимальные значения ВЧ-составляющей тока КЗ
Следует отметить также и другие противоречия, например, рекомендуемые для расчетов максимальные значения ВЧ-составляющей тока КЗ. Приведенные в максимальные токи отличаются от аналогичных значений, рекомендуемых к применению в (см. табл. 2). При этом параметры ВЧ-составляющей тока КЗ в КРУЭ в , в отличие от , не приведены, что дает возможность использовать при расчетной и экспериментальной оценке параметров ЗУ токи ВЧ-составляющей для КРУЭ, например 110 кВ, отличающиеся в несколько раз.

Указанные противоречия поставят в тупик проектировщиков и тех, кто будет обследовать состояние ЗУ на ПС.

Табл. 2. Максимальные значения ВЧ-составляющей тока КЗ

Частоты импульса генератора
Также в Приложении В к приведены требования к техническим средствам, где указаны частоты для импульса генератора, используемого для определения распределения импульсных напряжений. Оказывается, для этой цели нужно использовать частоты 0,5, 1 и 2 МГц. Как видно из сравнения с таблицей 1 в (частоты 1; 0,8; 0,3; 0,15 и 0,1 МГц для разных классов напряжения), приведенные значения совпадают только с одним значением.

К противоречиям с существующей НТД можно отнести и расхождения в формуле расчета зоны коррозионной опасности в и . В первых документах:

.

И если расхождение в коэффициентах незначительно, то появление члена «-125» под логарифмом приводит к значительному изменению получаемых значений. При этом поскольку не отменен, возникает противоречие: каким документом пользоваться для определения опасности коррозии?

Заземление ограждения ПС
Отдельно следует отметить противоречивую трактовку ПУЭ в части заземления ограды ПС. Так, в ПУЭ (п. 1.7.93) указано, что «внешнюю ограду электроустановок не рекомендуется присоединять к заземляющему устройству», при этом допускается в отдельных случаях, при невозможности выполнения ряда мероприятий, присоединять ограду к общему ЗУ ПС.

В то же время в рассматриваемый вопрос трактуется с точностью до наоборот, а именно: «Для обеспечения надежной работы охранной сигнализации и других устройств (например, видеонаблюдения), установленных по периметру ограждения ПС, и обеспечения безопасности людей и животных контур заземляющего устройства ПС должен выходить за пределы ограждения ПС и располагаться в 1 м от него, на глубине 1 м.», а следовательно, ограда должна заземляться на общее ЗУ ПС.

При этом случай, когда ограждение не должно присоединяться к ЗУ ПС (когда между ним и ЗУ расстояние превышает 2 м), определен как допустимый: «Допускается не выполнять внешний контур за пределами ограждения у ПС напряжением 110 кВ и ниже при отсутствии электроприемников на ограждении…».
Таким образом, если в ПУЭ заземление ограды на общее ЗУ ПС является не рекомендуемым, но допустимым случаем, то в , наоборот, обязательным, а случай отсутствия связи ограды с общим ЗУ ПС - допустимым.

НЕДОСТАТКИ ЭКСПЕРИМЕНТАЛЬНЫХ И РАСЧЕТНЫХ МЕТОДИК

Формула расчета нагрева экранов кабелей
В обоих документах приведена формула для расчета нагрева экранов кабелей. Вот эта формула и описание к ней: «Расчет температуры нагрева медных и алюминиевых экранов контрольных кабелей при коротких замыканиях в электроустановках напряжением 110 кВ и выше при заземлении экранов с двух сторон проводится по выражению:

, (1)

где ΔΘ - нагрев экрана кабеля (в °С);
U нэ - приложенное к заземленным концам экрана напряжение, обусловленное неэквипотенциальностью заземляющего устройства (В);
L - длина кабеля (м);
τ - время отключения короткого замыкания (сек)».

Как видно из текста, указанная формула должна применяться как для медных, так и для алюминиевых экранов, однако в самой формуле не учтены различные значения удельного сопротивления и теплоемкости материалов. При этом не сложно проверить, что для экранов, выполненных из меди и алюминия, имеющих одинаковое сечение, нагрев будет различным.

Использование такой формулы приведет к неверным результатам. При этом если авторы считают, что различие между результатами, рассчитанными по этой формуле и по другим, учитывающим параметры материала и сечение проводников, оказывается несущественным, то они должны были по крайней мере сделать ссылку на соответствующие экспериментальные или теоретические разработки.

По всей видимости, указанные расчеты были сделаны в работе , где общепринятая, указанная в ГОСТ 28895-91 формула для определения нагрева через ток и сечение (2) приведена к формуле через напряжение и длину (3):

, (2)

где β - величина, обратная температурному коэффициенту сопротивления, К ;
Θf и Θi - конечная и начальная температуры, К ;
ε - коэффициент учета тепловых потерь в соседние элементы;
σ - удельная объемная теплоемкость экрана, Дж/(К·м 3);
ρ - удельное электрическое сопротивление экрана при 20 °С, Ом·м;
Т - время протекания тока КЗ, с;
K - постоянная, зависящая от материала элемента:

. (4)

Однако, во-первых, приводимая в стандартах формула (1) не соответствует описанной в формуле (3) в первую очередь по характеру зависимости. Во-вторых, сделанный в вывод о том, что нагрев алюминиевых и медных экранов будет одинаковым, поскольку произведения коэффициентов ε 2 σρ будут близки для меди и алюминия, не верен. Отличие указанных произведений составляет несколько десятков процентов и очень сильно зависит от принимаемых условий (параметров материалов изоляции, проводника экрана, времени КЗ и других параметров).

Так, например, для σρ и других параметров (материал изоляции - ПВХ), взятых из , при времени КЗ t = 0,25 с отличие значения произведения ε 2 σρ для меди и алюминия будет составлять более 33%. Такое расхождение при определенных значениях тока даст в результате температуру менее 100 °С для меди (что допустимо) и более 160 °С для алюминия (что превышает допустимый уровень).

Формула (1) дает результаты, близкие к тем, что получаются при расчете по (2) и (3) только для случаев больших расстояний, когда токи по экранам относительно невелики, разность потенциалов достигает нескольких сотен вольт и длина кабеля - несколько десятков метров. Однако для случаев коротких расстояний, например, на участках электроаппарат - клеммный шкаф, где длина цепи может составлять 5-10 м, расхождение с формулами (2) и (3) оказывается значительным и в зависимости от параметров может давать как завышенные, так и заниженные результаты. Так, для короткой цепи (L = 5 м) при времени КЗ 0,1-0,15 с формула (1) даст значение меньше 150 °С, тогда как формулы (2) и (3) дадут значение выше 200 °С.

В любом случае результаты, получаемые с помощью формулы (1), будут противоречить результатам, получаемым с помощью формулы (2), принятой в ГОСТ 28895-91, и даже (3).

Кроме того, использование формулы нагрева через напряжение позволяет учитывать только идеальный случай - без учета переходного сопротивления заземления экрана кабеля, тогда как формула учета нагрева через ток (определяемый как сопротивлением экрана, так и переходным сопротивлением) позволяет при проведении экспериментальных измерений доли тока, растекающегося по экрану, точнее определить температуру нагрева реального кабеля.

Формула (1) дает заниженные по сравнению с (2) и (3) значения нагрева, что может приводить к значительному снижению надежности и даже к недооценке уровня нагрева кабелей при КЗ.

Представляется, что авторы стандартов хотели упростить жизнь проектировщикам и привести простую для использования формулу, однако формулы, приводимые в ГОСТ 28895-91, и так достаточно просты и, самое главное, более корректны.

Коэффициент ослабления помех при молниевом разряде
Авторами стандарта упорно игнорируется необходимость экспериментального определения коэффициента ослабления помех при молниевом разряде, тогда как определение такого коэффициента для высокой частоты (ВЧ-составляющей тока КЗ) прописано достаточно подробно. А ведь коэффициент ослабления помех при молниевом разряде оказывается ниже, чем для ВЧ-составляющей тока КЗ.

В также не приведены минимальные коэффициенты ослабления помех, возникающих при молниевых разрядах или срабатывании ОПН/разрядников. Представляется, что это связано с тем фактом, что авторы, прописывая в Приложении В требования к техническим средствам, указали длительность фронта импульсов генератора в широком диапазоне - от 0,25 до 10 мкс. Естественно, что при таком широком диапазоне длительностей фронтов сложно говорить о повторяемости измеренных значений коэффициента ослабления, зависящего от частоты, а при вводе импульса - от спектрального состава импульса. Однако авторы вместо того, чтобы указать методику измерения коэффициента ослабления (аналогичную таковой для ВЧ-составляющей тока КЗ) и потребовать, чтобы длительность фронта импульса испытательного генератора не менялась с погрешностью выше, например, 10-15%, попросту умолчали об этом.

По-видимому, основной причиной является то, что авторы стандарта либо связанные с ними организации производят измерения с помощью генераторов, не позволяющих выдавать импульсы с фиксированным фронтом. Однако в настоящее время уже существуют генераторы, способные выдавать импульс с параметрами 10/350 мкс, не меняющие время фронта для широкого диапазона сопротивлений заземляющего устройства (см. например ).

Разность потенциалов
Также к недостаткам методик измерения относится и предложенное в п. 8.10.2 (при определении помех, связанных с ударами молнии) требование измерять разность потенциалов между точками, находящимися вблизи элемента системы молниезащиты, и точкой, удаленной на расстояние не менее 50 м. Дело в том, что потенциал, возникающий при ударе молнии, спадает не столь быстро, как при протекании через ЗУ ВЧ-составляющей тока КЗ. И разности потенциалов, измеренные на расстоянии 50 м и 100 м, могут значительно отличаться.

Более того, важными ведь являются значения разностей потенциалов между, например, лотком (проходящим возле элемента системы молниезащиты) и не какой-то абстрактной точкой на ЗУ ПС, а вполне конкретной точкой: ОПУ/РЩ или электроаппаратом, куда заходят цепи, проложенные в лотке. Ведь именно эта разность будет приложена к изоляции кабеля. Но еще более важным будет определение не только этой разности потенциалов, поскольку, как известно, изоляция кабелей выдерживает больше, чем вход МП аппаратуры. Важнее определить уровень помехи на входе МП аппаратуры таким же способом, какой предложен для ВЧ-помех при КЗ (см. п. 8.10.1 ).

Максимально допустимое значение импульсного потенциала на ЗУ
В качестве недостатка методик следует отметить и то, что при определении помех при коммутациях и КЗ используется ничем не обоснованная цифра 10 кВ. Более того, почему-то указанное значение распространяется только на цепи, гальванически не связанные с ЗУ, тогда как для цепей, заземленных на ЗУ, максимально допустимый потенциал должен рассчитываться с учетом коэффициента затухания (передачи, ослабления или экранирования). Коэффициент ослабления импульсных помех, обусловленный влиянием заземленных с двух сторон экранов или элементов кабельной канализации, как раз и приводит к уменьшению разности потенциалов между жилами и ЗУ по мере распространения помехи вдоль вторичных кабелей. Более того, коэффициент ослабления помех для цепей, гальванически связанных с ЗУ, будет меньше, чем для не связанных.

Вообще сама постановка вопроса - допустимый импульсный потенциал на ЗУ - является неверной. К повреждениям приводит не потенциал, а разность потенциалов. Так, для участка кабеля, проходящего между электроаппаратом и клеммным шкафом на расстоянии 3-5 м, разность потенциалов будет значительно меньше, чем для кабеля, проходящего между клеммным шкафом и ОПУ/РЩ. В случае небольшой ПС в условиях высокого удельного сопротивления грунта импульсный потенциал на ЗУ практически неизбежно превысит 10 кВ, даже если приложенные к изоляции кабелей и входам аппаратуры разности потенциалов не представляют никакой опасности. Однако рассматриваемые документы не учитывают всех этих важных особенностей и нюансов. В результате мы имеем некорректные методики измерений и расчетов.

В , в п. 8.2.11, где рассматриваются двойные замыкания в сетях с изолированной нейтралью, не рассмотрен случай, когда одна точка замыкания находится до токоограничивающего реактора, а другая - после. В этом случае ток замыкания будет больше, чем когда обе точки находятся после реактора, следовательно, и разность потенциалов, приложенная к изоляции кабелей, будет больше.

Расчетное определение коэффициентов ослабления
Также следует отметить, что в стандартах отсутствуют рекомендации расчетного определения коэффициентов ослабления или описание методики проведения такого расчета. Но, как показало множество измерений и расчетов, более или менее точное определение коэффициента ослабления помех экранами кабелей и кабельными конструкциями позволяет значительно снизить возможные затраты на обеспечение ЭМС МП аппаратуры.

ВЫВОДЫ

Описанные выше недостатки СТО 56947007-29.130.15.105-2011 и СТО 56947007-29.130.15.114-2012 приводят к невозможности полноценного использования указанных документов в настоящее время и нивелируют достоинства документов. Имеющиеся противоречия с действующими документами создают опасные прецеденты размывания единых базовых требований в части обеспечения электробезопасности и ЭМС.

Документы нуждаются в комплексной переработке. Причем в процессе переработки должны быть не только устранены обнаруженные недостатки, но и добавлены и расширены отдельные методы расчетов и измерений.

Работы по переработке стандартов должны проводится с привлечением широкого круга специалистов в области ЗУ и ЭМС и сопровождаться дискуссиями в соответствующих средствах массовой информации.

ЛИТЕРАТУРА

  1. Методические указания по контролю состояния заземляющих устройств. СТО 56947007-29.130.15.105-2011.
  2. Руководящие указания по проектированию заземляющих устройств подстанций напряжением 6-750 кВ. СТО 56947007-29.130.15.114-2012.
  3. Методические указания по контролю состояния заземляющих устройств электроустановок. РД 153-34.0-20.525-00.
  4. Руководящие указания по проектированию заземляющих устройств электрических станций и подстанций напряжением 3-750 кВ переменного тока. 12740ТМ-Т1. Минэнерго СССР, 1987.
  5. Система стандартов безопасности труда. Электробезопасность. Предельно допустимые значения напряжений прикосновения и токов. ГОСТ 12.1.038-82.
  6. Методические указания по обеспечению электромагнитной совместимости на электросетевых объектах ЕНЭС. СТО 56947007-29.240.044-2010.
  7. Матвеев М.В., Кузнецов М.Б., Лунин М.Ю. Исследование высокочастотных характеристик ЗУ с помощью испытательных генераторов на базе управляемых нелинейных элементов: сборник докладов Третьей Российской конференции по заземляющим устройствам; под ред. Ю.В. Целебровского / Новосибирск: Сибирская энергетическая академия, 2008.
  8. Нестеров С.В., Прохоренко С.В. Расчетная оценка термической стойкости экранов контрольных кабелей: сборник докладов Третьей Российской конференции по заземляющим устройствам; под ред. Ю.В. Целебровского / Новосибирск: Сибирская энергетическая академия, 2008.
  9. Расчет термически допустимых токов короткого замыкания с учетом неадиабатического нагрева. ГОСТ 28895-91.

Как постоянные, так и временные ограждения применяются для предохранения сотрудников лаборатории и студентов от случайного прикосновения и недопустимого приближения к токоведущим частям экспериментальных установок и электрической проводки.

Постоянные ограждения применяются в установках, которые постоянно или большую часть времени находятся под напряжением. Такие ограждения изготовляются цельными или сетчатыми (высотой не менее 1,6 м) и должны надёжно прикрепляться к полу и к стенам. Металлические ограждения заземляются;

Временные ограждения выполняются в виде деревянных каркасов - ширм. Изготовляются они из сухого дерева. Поверхность ширм может быть сплошной или решетчатой. Ширма должна быть прочной, удобной, легкой и исключать возможность опрокидывания. Высота ширмы - 1,6 м, нижний край ее находится от пола не более чем на 10 см. Ширма легко передвигается усилием одного человека. После окончания работ, для того, чтобы не загромождать помещение лаборатории, ширмы убираются.

Ограждения устанавливаются от оборудования и шин высокого напряжения на безопасном расстоянии, зависящем от максимального напряжения высоковольтной установки. При отсутствии сплошного ограждения, выбранное по напряжению защитное расстояние необходимо увеличить на длину вытянутой руки (50 - 70 см).

Защитное заземление и зануление

В электрических установках возможны случаи, когда металлические конструктивные части, нормально не находящиеся под напряжением, получают по различным причинам потенциал, отличный от потенциала «земли».

Прикосновение к частям оборудования под таким потенциалом вызовет прохождение через тело человека тока, могущего представлять опасность для жизни человека. Поэтому для обеспечения безопасности людей, работающих с электрическими установками, требуется выполнять защитное заземление или зануление.

Защитным заземлением называется соединение с заземлителем металлических, изолированных от напряжения частей электроустановок (рис. 1, а).

При повреждении изоляции оборудования или замыкании сети на корпус заземленного оборудования, ток проходит через заземление на землю. Это обеспечивает снижение напряжения прикосновения до безопасной величины.

Защитное заземление применяется в сетях, не имеющих глухого заземления нейтрали, и во всех установках высокого напряжения.

В осветительных и силовых сетях с рабочим напряжением до 1000 В, работающих с глухим заземлением нейтрали, вместо защитного заземления применяется защитное зануление (рис. 1, б).

Применение в одной и той же сети зануления для одних частей обрудования и заземления для других не допускается.

П

Рис. 1 Защитное заземление а) и зануление б)

ри монтаже контура защитного заземления или зануления необходимо руководствоваться существующими нормами и правилами для этих работ.

Поражение человека электрическим током зависит от тока, напряжения, состояния организма, окружающей среды и обстановки в рабочем помещении. В зависимости от данных условий изменяется и величина опасного для человека напряжения. Поэтому во всех случаях должно быть обеспечено правильное выполнение защитного заземления корпусов оборудования. Расположение рабочих мест должно исключать одновременное прикосновение к токоведущим частям оборудования и приборов, с одной стороны, и к трубам водопровода, паропровода, газопровода, с другой.

Заземление или зануление выполняется:

    при напряжении выше 150 В по отношению к земле, во всех производственных помещениях независимо от условий окружающей среды;

    при напряжении от 65 до 150 В по отношению к земле:

    во всех особо опасных помещениях;

    в помещениях пожаро- и взрывоопасных;

    в наружных установках.

Заземлению или занулению подлежат: металлические корпуса трансформаторов, электрических машин, распределительных щитов, аппаратов и кабельных муфт, металлические оболочки и металлические защитные трубы проводов, кабелей и др.

Заземлению или занулению не подлежат при напряжении выше 250 вольт по отношению к земле:

    электрооборудование и оболочки кабелей, находящиеся в помещении без повышенной опасности или находящиеся на недоступной высоте и обслуживаемые с деревянных лестниц, при условии, если исключается возможность одновременного прикосновения к другим заземленным предметам (трубы, оболочки кабелей и т.д.);

    корпуса измерительных приборов, реле и т.п., установленные на щитках;

    кабельные конструкции, на которых лежат заземлённые кабели и оболочки контрольных кабелей.

Переносное заземление является обязятельной мерой защиты работающих от:

    случайного появления напряжения на месте работы;

    поражения зарядом с высоковольтных конденсаторов.

Для переносного заземления должен применяться медный многожильный провод без изоляции.

Сечение провода переносного заземления выбирается в зависимости от мощности установки. На импульсных генераторах и на других установках, где, несмотря на большие напряжения, незначительная сила тока или очень мала длительность тока, сечение переносного заземления берется из условий его механической прочности.

При ремонтных и монтажных работах в экспериментальных установках, после проверки отсутствия напряжения и в случае освобождения отключенных частей установки от остаточного заряда (конденсаторы, емкость линии), на отключенные токоведущие части накладывается заземление. При этом переносное заземление должно быть сначала подключено к земле (к контуру заземления), а затем оно накладывается на выводы оборудования, подлежащего заземлению. Снятие переносного заземления производится в обратном порядке.