04.03.2020

Измерение электрических характеристик. Характеристика средств измерения электрических величин. Меры, измерительные приборы и методы измерения


Измерения электрических параметров кабельных линий связи

1. Измерения электрических параметров кабельных линий связи

1.1 Общие положения

Электрические свойства кабельных линий связи характеризуются параметрами передачи и параметрами влияния.

Параметры передачи оценивают процессы распространения электромагнитной энергии вдоль кабельной цепи. Параметры влияния характеризуют явления перехода энергии с одной цепи на другую и степень защищенности от взаимных и внешних помех.

К параметрам передачи относятся первичные параметры:

R - сопротивление,

L - индуктивность,

С - ёмкость,

G - проводимость изоляции и вторичные параметры,

Z - волновое сопротивление,

a - коэффициент затухания,

β - коэффициент фазы.

К параметрам влияния относятся первичные параметры;

К - электрическая связь,

М - магнитная связь и вторичные параметры,

Во-переходное затухание на ближнем конце,

Bℓ - переходное затухание на дальним конце.

В области низких частот качество и дальность связи определяются в основном параметрами передачи, а при высокочастотном использовании цепей важнейшими характеристиками являются параметры влияния.

При эксплуатации кабельных линий связи проводятся измерения их электрических параметров, которые делятся на профилактические, контрольные и аварийные. Профилактические измерения осуществляются через определенные промежутки времени для оценки состояния линий связи и приведение их параметров к нормам. Контрольные измерения проводят после технического обслуживания и других видов работ для оценки качества их выполнения. Аварийные измерения осуществляются в целях определения характера и места повреждения линии связи.

1.2 Измерение сопротивления цепи

Различают сопротивление цепи (Rц) постоянному току и сопротивление цепи переменному току. Сопротивление 1 км провода постоянному току зависит от материала провода (удельного сопротивления - p), диаметра провода и температуры. Сопротивление любого провода при увеличение температуры увеличивается, а при увеличении диаметра уменьшается.

Для любой температуры сопротивление от 20 °С, сопротивление может быть подсчитано по формуле:

Rt =Rt=20 [1+а (t -20)] Ом/км,

где Rt - сопротивление при данной температуре,

a - температурный коэффициент сопротивления.

Для двух проводных цепей полученную величину сопротивления необходимо умножить на два.

Сопротивление 1 км провода переменному току зависит, кроме указанных факторов, еще и от частоты тока. Сопротивление переменному току всегда больше, чем постоянному, вследствие поверхностного эффекта.

Зависимость сопротивления провода переменному току от частоты определяется формулой:

R=K1 × Rt Ом/км,

где K1 - коэффициент, учитывающий частоту тока (с увеличением частоты тока K1 увеличивается)

Сопротивление цепи кабеля и отдельных проводов измеряется на смонтированных усилительных участках. Для измерения сопротивления используется схема моста постоянного тока с постоянным отношением балансных плеч. Данную схему обеспечивают измерительные приборы ПКП-3М, ПКП-4М, П-324. Схемы измерения с использованием указанных приборов изображены на рис. 1 и рис. 2.

Рис. 1. Схема измерения сопротивления цепи прибором ПКП

Рис. 2. Схема измерения сопротивления цепи прибором П-324

Измеренное сопротивление пересчитывается на 1 км цепи и сравнивается с нормами на данный кабель. Нормы сопротивлений на некоторые типы легких и симметричных кабелей приведены в табл. 1.

Таблица 1

Пара-метрКабельП-274 П-274МП-270ТГ ТБТЗБ ТЗГП-296МКБ МКГМКСБ МКСГСопротивление цепи постоянному току (¦ = 800Гц), при +20 °С, Ом/км115÷12536,0d=0,4 £148d=0,8 £56,155,5d=1,2 £31,9d=0,9 £28,5d=0,75 £95d=0,9 £28,5d=1,4 £23,8d=1,2 £15,85d=0,6 £65,8d=1,0 £23,5d=0,7 £48d=1,2 £16,4d=1,4 £11,9

Сопротивление постоянному току d равно, а активное сопротивление легких полевых кабелей связи (П-274, П-274М, П-275) не зависят от способов прокладки линий и условий погоды («сухо», «сыро») и имеет лишь температурную зависимость, возрастая с увеличением температуры окружающей среды (воздуха, почвы и т.д.).

Если в результате сравнения измеренное значение сопротивления больше нормы, то это может означать наличие плохого контакта в сростках кабеля или в соединительных полумуфтах.

1.3 Измерение ёмкости

Емкость (Сх) является одним из важнейших первичных параметров передачи цепей кабельных линий связи. По ее величине можно судить о состоянии кабеля, определять характер и место его повреждения.

По фактической природе ёмкость кабеля аналогична ёмкости конденсатора, где роль обкладок выполняют поверхности проводов, а диэлектриком служит расположенный между ними изоляционный материал (бумага, стирофлекс и т.д.).

Ёмкость цепей кабельных линий связи зависит от длины линии связи, конструкции кабеля, изоляционных материалов, типа скрутки.

На величину ёмкости цепей симметричных кабелей оказывают влияние соседние жилы, оболочки кабеля, так как все они находятся в непосредственной близости друг от друга.

Измерения ёмкости кабеля производят измерительными приборами типа ПКП-3М, ПКП-4М, П-324. При измерении прибора ПКП используется баллистический метод измерения, а прибор П-324 измеряет по схеме моста переменного тока с переменным отношением балансных плеч.

На кабельных линиях связи могут производиться:

измерения ёмкости пары жил;

измерения ёмкости жилы (относительно земли).

1.3.1 Измерение ёмкости пары жил прибором П-324

Измерение ёмкости пары жил производится по схеме, приведенной на рис. 3.

Рис. 3. Схема измерения ёмкости пары жил

Одно из балансных плеч представляет собой набор резисторов nR, втрое - магазин сопротивлений - Rмс. Два других плеча - эталонная ёмкость Со и измеряемая Сх.

Для обеспечения равенства углов потерь плеч и используются потенциометры БАЛАНС Сх ГРУБО и БАЛАНС Сх ПЛАВНО. Баланс моста обеспечивается с помощью магазина сопротивлений Rмс. При равенстве углов потерь плеч и баланса моста справедливо следующее равенство:

Поскольку Со и R постоянны для данной схемы измерения, то измеряемая ёмкость обратно пропорциональна сопротивлению магазина. Поэтому магазин сопротивлений градуируется непосредственно в единицах ёмкости (нФ), а результат измерения определяется из выражения:

Сх = n Смс.

1.3.2 Измерение ёмкости жилы относительно земли

Измерение ёмкости жилы относительно земли проводится по схеме рис. 4.

Рис. 4. Схема измерения ёмкости жилы относительно земли

Нормы среднего значения рабочей ёмкости пары жил для некоторых типов кабельных линий связи приведены в табл. 2.

Таблица 2

Пара-метрКабельП-274 П-274МП-270ТГ ТБТЗБ ТЗГП-296МКБ МКГМКСБ МКСГСреднее значение рабочей ёмкости, нФ/км32,6 ÷ 38,340,45d =0,4 d =0,5 С=50d =0,8 С=3836,0d =1,2 С=27 d =1,4 С=3624,0÷25d =0,9 С=33,5d =0,6 С=40d =1,0 С=34d =0,7 С=41d =1,2 С=34,5d =1,4 С=35,5

Примечание:

. Ёмкость легких полевых кабелей связи в зависимости от способа прокладки, состояния погоды, а также температуры окружающей среды колеблется. Наибольшее влияние оказывает увлажнение или покрытие кабельной оболочки полупроводящими наслоениями (почва, атмосферные осадки, сажа и т.д.) Ёмкость кабеля П-274 заметно изменяется с ростом температуры и частоты (с ростом температуры ёмкость увеличивается, а с увеличением частоты уменьшается).

Рабочая ёмкость кабеля МКСБ, МКСГ зависит от числа четвёрок (одно-, четырёх- и семичетвёрочные) и количества сигнальных жил.

1.4 Измерение сопротивления изоляции

При оценке качества изоляции цепи обычно пользуются понятием «сопротивление изоляции» (Rиз). Сопротивление изоляции есть величина, обратная проводимости изоляции.

Проводимость изоляции цепи зависит от материала и состояния изоляции, атмосферных условий и частоты тока. Проводимость изоляции значительно увеличивается при загрязнении изоляции, при наличии в ней трещин, при нарушении целости слоя изоляционного покрова кабеля. В сырую погоду проводимость изоляции больше, чем в сухую. С увеличением частоты тока проводимость изоляции увеличивается.

Измерение сопротивления изоляции может производиться приборами ПКП-3, ПКП-4, П-324 при профилактических и контрольных испытаниях. Сопротивление изоляции измеряется между жилами и между жилой и землей.

Для измерения сопротивления изоляции Rиз управляющая обмотка МУ включается последовательно с источником напряжения и измеряемым сопротивлением изоляции. Чем меньше величина измеряемого Rиз, тем больше ток в управляющей обмотке МУ, а следовательно, и больше ЭДС в выходной обмотке МУ. Усиленный сигнал детектируется и фиксируется прибором ИП. Шкала прибора градуируется непосредственно в мегомах, поэтому отсчёт измеряемой величины Rиз. производится по верхней или средней шкале с учётом положения переключателя ПРЕДЕЛ Rмом.

При измерении прибором ПКП сопротивления изоляции используется схема омметра, которая состоит из последовательно соединенных микроамперметра и источника питания напряжением 220В. Шкала микроамперметра проградуирована от 3 до 1000 Мом.

Нормы сопротивления изоляции для некоторых типов кабелей связи приведены в табл. 3.

Таблица 3

ПараметрКабельП-274 П-274МП-270ТГ ТБТЗБ ТЗГП-296МКБ МКГМКСБ МКСГСопротивление изоляции одиночных жил относительно других жил, при t=20 °С не менее, МОм/км100÷1000 250÷2500500050001000050001000010000

Сопротивление изоляции лёгких полевых кабелей связи в большей степени зависит от способа прокладки условий эксплуатации, а также температуры окружающей среды.

1.5 Измерение вторичных параметров передачи

1.5.1 Волновое сопротивление

Волновое сопротивление (Zc) - это сопротивление, которое встречает электромагнитная волна при распространении вдоль однородной цепи без отражения. Оно свойственно данному типу кабеля и зависит лишь от первичных параметров и частоты передаваемого тока. Величина волнового сопротивления характеризует цепь, так как показывает соотношение между напряжением (U) и током (I) в любой её точке для однородной цепи величина постоянная, не зависящая от ее длины.

Так как все первичные параметры, за исключением ёмкости, зависят от частоты тока, то при увеличении частоты тока волновое сопротивление уменьшается.

Измерение и оценка величины волнового сопротивления может производиться с помощью прибора Р5-5. С этой целью работы производятся с обоих концов кабельной линии связи. На одном конце измеряемая цепь нарушается активным сопротивлением, в качестве которого рекомендуется использовать высокочастотные мастичные сопротивления СП, СПО или магазин непроволочных сопротивлений, на другом подключается прибор Р5-5. Регулируя сопротивления на дальнем конце цепи и увеличивая усиление прибора на ближнем конце цепи, добиваются минимального отражения от дальнего конца линии по прибору Р5-5. Величина сопротивления, подобранная на дальнем конце цепи в этом случае будет соответствовать волновому сопротивлению цепи.

Нормы на величину среднего значения волнового сопротивления приведены в табл. 4.

Таблица 4

Час-то-та, кГцКабельП-274П-274МП-270ТГ, ТБТЗГ, ТЗСП-296МКБ МКГМКСБ МКСГсухов водесухов воде0,8720495823585798 ÷1085368 ÷64843548749010,0230155258181146231 ÷308147 ÷200160190,519616,0205135222158139133 ÷17415218218660131142 ÷147130174174,6120129142 ÷146171168,4200128169,2167,3300126168,2166,3

1.5.2 Рабочее затухание

При распространении электрической энергии по проводам амплитуды тока и напряжения уменьшаются или, как говорят, претерпевают затухание. Уменьшение энергии на длине цепи 1 км учитывается через коэффициент затухания, который иначе называют километрическим затуханием. Коэффициент затухания обозначается буквой a и измеряется в неперах на 1 км. Коэффициент затухания зависит от первичных параметров цепи и обусловлен двумя видами потерь:

затухание за счет потерь энергии на нагрев металла провода;

затухание за счет потерь несовершенства изоляции и за счет диэлектрических потерь.

В нижней области частот доминируют потери в металле, а выше начинают сказываться потери в диэлектрике.

Так как первичные параметры зависят от частоты, то и a зависит от частоты: с увеличением частоты тока a увеличивается. Увеличение затухания объясняется тем, что с возрастанием частоты тока увеличиваются активное сопротивление и проводимость изоляции.

Зная коэффициент затухания цепи (a) и длину цепи (ℓ), то можно определить собственное затухание всей цепи (а):

а=a× ℓ, Нп

Для четырехполосников, образующих канал связи, обычно не удается полностью обеспечить условия согласованного включения. Поэтому для учета несогласованности как во входной так и в выходной цепях образованного канала связи в действительных (реальных) условиях недостаточно знания только собственного затухания.

Рабочее затухание (ар) - это затухание кабельной цепи в реальных условиях, т.е. при любых нагрузках по ее концам.

Как правило, в реальных условиях рабочее затухание больше собственного затухания (ар > а).

Одним из методов измерения рабочего затухания является метод разности уровней.

При измерениях по этому методу необходим генератор с известной ЭДС, известным внутренним сопротивлением Zо. Абсолютный уровень напряжения на согласованной нагрузке генератора Zо измеряется указателем уровня станции А и определяется:

а абсолютный уровень напряжения на нагрузке Zi измеряется указателем уровня станции Б.

Нормы на коэффициент затухания цепей некоторых типов кабельных линий связи, представлены в табл. 5.

Вторичные параметры легких полевых кабелей связи существенно зависят от способа прокладки линий (подвеска, по земле, в земле, в воде).

1.6 Измерение параметров влияния

Степень влияния между цепями кабельной линии связи принято оценивать величиной переходного затухания. Переходное затухание характеризует затухание токов влияния при переходе их с влияющей цепи в цепь, подверженную влиянию. При прохождении переменного тока по влияющей цепи вокруг нее создается переменное магнитное поле, которое пересекает цепь, подверженную влиянию.

Различают переходное затухание на ближнем конце Ао и переходное затухание на дальнем конце Аℓ.

Затухание переходных токов, проявляющихся на том конце цепи, где расположен генератор влияющей цепи, называется переходным затуханием на ближнем конце.

Затухание переходных токов, поступивших на противоположный конец второй цепи, называется переходным затуханием на дальнем конце.

Таблица 5. Нормы на коэффициент затухания цепей, Нп/км.

Частота, кГцКабельП-274П-274МП-270ТГ, ТБТЗГ, ТЗСП-296МКБ МКГМКСБ МКСГсухов водесухов воде0,80,1080,1570,0950,1440,0650,04÷0,670,043÷0,0660,0440,043100,2840,3980,2680,3740,1160,344÷0,6440,091÷0,1700,200,0910,087160,3200,4450,3040,4210,1360,103÷0,1820,230,0960,092300,1740,129÷0,2200,240,1110,114600,2290,189÷0,2750,280,1500,1451200,3110,299÷0,3830,380,2180,2102000,3920,460,2940,2743000,4740,3720,3325520,81

1.6.1 переходное затухание на ближнем конце

Переходное затухание на ближнем конце важно измерять и оценивать для четырехпроводных систем с разными направлениями передачи и приема. К таким системам относятся однокабельные системы передачи (П-303, П-302, П-301, П-330-6, П-330-24), работающие по одночетвёрочному кабелю (П-296, Р-270).

Наиболее распространенным методом измерения переходных затуханий является метод сравнения, используемый при применении комплекта приборов ВИЗ-600, П-322. При измерении прибором П-324 используется смешанный (сравнения и дополнения) метод.

Суть метода сравнения и дополнения заключается в том, что в положении 2 величина переходного затухания (Ао) дополняется затуханием магазина (амз) до значения на менее 10 Нп. Изменяя затухание магазина, добиваются выполнения условия Ао + амз ≥10 Нп.

Для удобства отсчета измеряемой величины на переключателе НП указаны цифры не затухания амз, фактически вносимого магазином, а разности 10 - амз.

Поскольку затухание магазина изменяется не плавно, а ступенями через 1 Нп, остаток затухания свой в Нп измеряется по шкале стрелочного прибора (ИП) в пределах от 0 до 1 Нп.

Перед измерением производится градуировка прибора (ИП), для чего переключатель НП схемы устанавливается в положение ГРАД (положение 1 на рис. 9). При этом выход генератора подключается к измерителю через эталонный удлинитель (ЭУ) с затуханием 10 Нп.

Нормы на переходное затухание приведены в табл. 6.

Таблица 6. Нормы на переходное затухание на ближнем конце внутри и между смежными четвёрками, не менее, Нп

Тип кабеляЧастота, кГцДлина линии, кмПереходное затуханиеП-27060106,0П-29660108,8МКБ МКГ100 2000,850 0,8506,8 6,8МКСБ, МКСГВесь диапазон частот0,6507,2

Для кабеля П-296 проверка переходного затухания производится также на частотах 10 кГц и 30 кГц.

1.6.2 Переходное затухание на дальнем конце

Переходное затухание на дальнем конце важно измерять и оценивать также для четырехпроводных систем, но с одинаковыми направлениями приема и передачи. К таким системам относятся двухкабельные системы передачи типа П-300, П-330-60.

Для измерения переходного затухания на дальнем конце Аℓ необходимо иметь два прибора П-324, устанавливаемых на противоположных концах измеряемых цепей. Измерение производится в три этапа.

Так же с помощью прибора П-324 возможно измерение затуханий не менее 5 Нп, на входе прибора включается удлинитель УД 5 Нп, входящий в состав устройства для проверки работоспособности прибора.

Полученный результат измерения делится пополам и определяется затухание одной цепи.

После этого собирается схема и проводится градуировка измерительного тракта прибора станции Б, подключаемого к влияющей цепи. При этом сумма затуханий цепи, удлинителя УД 5Нп и магазина затухания должна быть не менее 10 Нп, остаток затухания сверх 10Нп устанавливается на стрелочном приборе.

На третьем этапе измеряется переходное затухание на дальнем конце. Результат измерения представляет собой сумму показаний переключателя НП и стрелочного прибора.

Измеренная величина переходного затухания на дальнем конце сравнивается с нормой. Нормой переходного затухания на дальнем конце приведены в табл. 7.

Таблица 7

Тип кабеляЧастота, кГцДлина линии, кмПереходное затуханиеП-27060105,5П-29660105,0МКБ МКГ100 2000,850 0,8507,8 7,8МКСБ, МКСГВесь диапазон частот0,6508,2

Во всех симметричных кабельных цепях переходное затухание с ростом частоты снижается примерно по логарифмическому закону. Для увеличения переходного затухания между цепями токопроводящие жилы при изготовлении скручиваются в группы (пары, четверки, восьмерки), группы свиваются в кабельный сердечник, цепи экранируются, а при прокладке кабельных линий связи производится симметрирование кабеля. Симметрирование на кабелях низкой частоты заключается в дополнительном скрещивании их при развертывании и включение конденсаторов. Симметрирование на ВЧ кабелях - это скрещивание и включение контуров противосвязи. Потребность в симметрировании может возникнуть при ухудшении параметров влияния кабеля в процессе его долголетнего использования или при строительстве линии связи большой протяженности. Необходимость симметрирования кабеля должна определяться в каждом конкретном случае, исходя из фактической величины переходного затухания цепей, которая зависит от системы связи (системы использования цепей кабеля и аппаратуры уплотнения) и протяженности линии.

2. Определение характера и места повреждения кабельных линий связи

2.1 Общие положения

На кабелях связи могут быть следующие виды повреждений:

понижение сопротивления изоляции между жилами кабеля или между жилами и землей;

понижение сопротивления изоляции «оболочка - земля» или «броня - земля»;

полный обрыв кабеля;

пробой диэлектрика;

асимметрия сопротивления жил;

разбитость пар в симметричном кабеле.

2.2 Испытания для определения характера повреждений

Определение характера повреждений («земля», «обрыв», «короткое» понижение сопротивления изоляции) проводится испытанием каждой жилы кабеля с помощью схем мегомметра или омметра различных измерительных приборов (например, П-324, ПКП-3, ПКП-4, КМ-61С и др). В качестве омметра можно использовать комбинированный прибор «тестер».

Испытания проводятся в следующем порядке:

Проверяется сопротивление изоляции между одной жилой и остальными, соединенными с заземленным экраном.

На станции А, где проводятся испытания, все жилы, кроме одной, соединяются вместе и с экраном и заземляются. На станции Б жилы ставятся на изоляцию. Измеряется сопротивление изоляции и сравнивается с нормой для данного типа кабеля. Испытания и анализ проводятся для каждой жилы кабеля. Если измеренное значение сопротивления изоляции окажется ниже нормы, то определяется характер повреждения:

повреждение изоляции относительно «земли»;

повреждение изоляции относительно экрана кабеля;

повреждение изоляции относительно других жил кабеля.

Для определения характера повреждения на станции А поочередно снимают «землю» с жил кабеля и проводят анализ:

а) если снятие «земли» с какой-то жилы (например, с жилы 2 на рис. 13) приводит к резкому увеличению сопротивления изоляции, то повреждена изоляция между испытываемой жилой (жила 1) и той, с которой снята «земля» (жила 2);

б) если снятие «земли» со всех жил не приводит к увеличению сопротивления изоляции до нормы, то изоляция испытуемой жилы (жила 1) повреждена относительно экрана кабеля (земли).

Если при очередном испытании окажется, что сопротивление изоляции составляет сотни Ом или единицы кОм, то это указывает на возможное короткое замыкание между испытываемыми жилами кабеля (например, «короткое» показано между жилами 3 и 4);

Проверяется целость жил кабеля, для чего все жилы на станции Б соединяются вместе и с экраном. На станции А каждая жила проверяется омметром на целость.

Установление характера повреждения позволяет выбрать один из методов определения до места повреждения.

2.3 Определение места повреждения изоляции жил проводов

Для определения места повреждения изоляции жил применяют мостовые схемы, выбор которых зависит от того, имеются ли в данном кабеле исправные жилы или нет.

При наличии исправного провода, равного по сопротивлению поврежденному, и при сопротивлении изоляции поврежденного провода до 10мОм измерения производят методом моста с переменным отношением балансных плеч.

Величины сопротивления плеч моста Rа и Rм при измерениях подбираются таким образом, чтобы ток в диагонали моста, в которую включен ИП, отсутствовал.

При определении места повреждения изоляции методом моста с переменным отношением балансных плеч используются приборы ПКП-3, ПКП-4, КМ-61С. В этих приборах сопротивление Rм переменное и определяется при измерениях в момент равновесия моста, а сопротивление Rа постоянное и для приборов ПКП выбрано равным 990 ОМ, для прибора КМ-61С-1000 Ом.

Если исправный и поврежденный провода имеют разные сопротивления, то измерения производятся с обоих концов кабельной линии связи.

При использовании приборов ПКП-3, ПКП-4 могут применяться и другие методы измерения сопротивления изоляции с целью определения места повреждения кабеля:

  1. Метод моста с переменным отношением балансных плеч со вспомогательной линией. Применяется при наличии исправных проводов, не равных по сопротивлению повреждённому, и сопротивлений изоляции повреждённого провода до 10 МОм, а вспомогательного - свыше 5000 МОм,
  2. Метод моста с постоянным отношением балансных плеч способом двойной петли. Применяется при наличии значительных токов помех и сопротивлений изоляции повреждённого провода до 10 М0 м, а вспомогательная - свыше 5000 МОм.
  3. Метод моста с постоянным отношением балансных плеч при больших переходных сопротивлениях. Применяется при наличии исправного провода, равного по сопротивлению повреждённому, и переходном сопротивлении в месте повреждения изоляции до 10 МОм.
  4. Метод двухсторонних измерений сопротивления шлейфа повреждённых проводов. Применяется при отсутствии исправных проводов и переходном сопротивлении порядка сопротивления шлейфа.

5. Метод холостого хода и короткого замыкания при использовании моста с постоянным отношением балансных плеч. Применяется при отсутствии исправных проводов и переходном сопротивление в месте повреждения изоляции до 10 кОм.

Метод холостого хода и короткого замыкания при использовании моста с переменным отношением балансных плеч. Применяется при отсутствии исправных проводов и переходном сопротивлении в месте повреждения изоляции от 0,1 до 10 МОм.

При отсутствии исправных проводов определение места повреждения изоляции мостовыми методами с достаточной точностью представляет определенные трудности. В этом случае могут использоваться импульсный и индуктивный методы. Для измерений импульсным методом применяются прибором Р5-5, P5-10, дальность действия которых может достигать 20-25 км на симметричных кабелях связи.

2.4 Определение места обрыва проводов

Определение места обрыва проводов может осуществляться следующим методами:

Метод моста на пульсирующем токе. Применяется при наличии исправного провода, равного по сопротивлению поврежденному.

Метод сравнения ёмкостей (баллистический метод). Применяется при равной удельной ёмкости исправного и повреждённого проводов.

Метод сравнения ёмкостей при двухстороннем измерении. Применяется при неравной удельной емкости повреждённого и исправного проводов и, в частности, при невозможности заземлить неизмеряемые провода лини.

Для определения места обрыва проводов могут использоваться приборы ПКП-3, ПКП-4, KM-61C, П-324.

При наличии в кабеле исправной жилы и возможности заземления всех остальных жил кабеля поочередно измеряется рабочая ёмкость исправной жилы (Сℓ), затем поврежденной жилы (Сх).

Если же по условиям эксплуатации кабеля заземление остальных неизмеряемых жил невозможно, то для получения достоверного результата оборванную жилу измеряют с двух сторон, расстояние до места обрыва вычисляют по формуле:


5. Техническое обслуживание линейных сооружений
5.1. Общие положения
5.2. Осмотр и профилактическое обслуживание линейно-кабельных сооружений
5.3. Осмотр и профилактическое обслуживание воздушных линий
5.4. Измерения электрических характеристик кабельных, воздушных и смешанных линий
5.5. Проверка новых кабелей, проводов, оконечных кабельных устройств и арматуры, поступающих в эксплуатацию
6. Устранение повреждений кабельных,воздушных и смешанных линий
6.1. Организация работ по устранению аварий и повреждений линий
6.2. Методы отыскания и устранения повреждений кабельных линий
6.2.1. Общие указания
Правила обслуживания и ремонта кабелей связи
5.4. Измерения электрических характеристик кабельных, воздушных и смешанных линий

5.4.1. Измерение электрических характеристик кабельных, воздушных и смешанных линий местных сетей связи проводят с целью проверки соответствия характеристик установленным нормам и предупреждения аварийного состояния.

5.4.2. Электрические измерения линий проводятся измерительной группой предприятия связи в соответствии с действующими "Руководствами" по электрическим измерениям линий ГТС и СТС.

5.4.3. Измерительная группа выполняет следующие виды электрических измерений линий:

Плановые (периодические);

Измерения по определению мест повреждений;

Контрольные измерения, проводимые после выполнения ремонтных и восстановительных работ;

Измерения при приемке в эксплуатацию вновь построенных и реконструированных линий;

Измерения по уточнению трассы кабельной линии и глубины залегания кабеля;

Измерения для проверки качества изделий (кабелей, проводов, разрядников, предохранителей, плинтов, боксов, коммутационных коробок, изоляторов и т.п.), поступающих от промышленности, перед установкой (монтажом) их на линиях.

Виды измеряемых параметров и объемы плановых, контрольных и приемо-сдаточных измерений электрических характеристик кабельных, воздушных и смешанных линий местных сетей связи приведены в указанных в п. 5.4.2. "Руководствах".

5.4.4. Измеренные электрические характеристики кабельных, воздушных и смешанных линий местных сетей связи должны соответствовать нормам, приведенным в Приложении 4 .

5.4.5. Результаты плановых, контрольных и аварийных измерений электрических характеристик линий служат исходными данными при определении состояния линейных сооружений и основанием при разработке планов текущего и капитального ремонта и проектов реконструкции сооружений.

ЭЛЕКТРИЧЕСКИЕ ИЗМЕРЕНИЯ
измерение электрических величин, таких, как напряжение, сопротивление, сила тока, мощность. Измерения производятся с помощью различных средств - измерительных приборов, схем и специальных устройств. Тип измерительного прибора зависит от вида и размера (диапазона значений) измеряемой величины, а также от требуемой точности измерения. В электрических измерениях используются основные единицы системы СИ: вольт (В), ом (Ом), фарада (Ф), генри (Г), ампер (А) и секунда (с).
ЭТАЛОНЫ ЕДИНИЦ ЭЛЕКТРИЧЕСКИХ ВЕЛИЧИН
Электрическое измерение - это нахождение (экспериментальными методами) значения физической величины, выраженного в соответствующих единицах (например, 3 А, 4 В). Значения единиц электрических величин определяются международным соглашением в соответствии с законами физики и единицами механических величин. Поскольку "поддержание" единиц электрических величин, определяемых международными соглашениями, сопряжено с трудностями, их представляют "практическими" эталонами единиц электрических величин. Такие эталоны поддерживаются государственными метрологическими лабораториями разных стран. Например, в США юридическую ответственность за поддержание эталонов единиц электрических величин несет Национальный институт стандартов и технологии. Время от времени проводятся эксперименты по уточнению соответствия между значениями эталонов единиц электрических величин и определениями этих единиц. В 1990 государственные метрологические лаборатории промышленно развитых стран подписали соглашение о согласовании всех практических эталонов единиц электрических величин между собой и с международными определениями единиц этих величин. Электрические измерения проводятся в соответствии с государственными эталонами единиц напряжения и силы постоянного тока, сопротивления постоянному току, индуктивности и емкости. Такие эталоны представляют собой устройства, имеющие стабильные электрические характеристики, или установки, в которых на основе некоего физического явления воспроизводится электрическая величина, вычисляемая по известным значениям фундаментальных физических констант. Эталоны ватта и ватт-часа не поддерживаются, так как более целесообразно вычислять значения этих единиц по определяющим уравнениям, связывающим их с единицами других величин. См. также ЕДИНИЦЫ ИЗМЕРЕНИЯ ФИЗИЧЕСКИХ ВЕЛИЧИН .
ИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ
Электроизмерительные приборы чаще всего измеряют мгновенные значения либо электрических величин, либо неэлектрических, преобразованных в электрические. Все приборы делятся на аналоговые и цифровые. Первые обычно показывают значение измеряемой величины посредством стрелки, перемещающейся по шкале с делениями. Вторые снабжены цифровым дисплеем, который показывает измеренное значение величины в виде числа. Цифровые приборы в большинстве измерений более предпочтительны, так как они более точны, более удобны при снятии показаний и, в общем, более универсальны. Цифровые универсальные измерительные приборы ("мультиметры") и цифровые вольтметры применяются для измерения со средней и высокой точностью сопротивления постоянному току, а также напряжения и силы переменного тока. Аналоговые приборы постепенно вытесняются цифровыми, хотя они еще находят применение там, где важна низкая стоимость и не нужна высокая точность. Для самых точных измерений сопротивления и полного сопротивления (импеданса) существуют измерительные мосты и другие специализированные измерители. Для регистрации хода изменения измеряемой величины во времени применяются регистрирующие приборы - ленточные самописцы и электронные осциллографы, аналоговые и цифровые.
ЦИФРОВЫЕ ПРИБОРЫ
Во всех цифровых измерительных приборах (кроме простейших) используются усилители и другие электронные блоки для преобразования входного сигнала в сигнал напряжения, который затем преобразуется в цифровую форму аналого-цифровым преобразователем (АЦП). Число, выражающее измеренное значение, выводится на светодиодный (СИД), вакуумный люминесцентный или жидкокристаллический (ЖК) индикатор (дисплей). Прибор обычно работает под управлением встроенного микропроцессора, причем в простых приборах микропроцессор объединяется с АЦП на одной интегральной схеме. Цифровые приборы хорошо подходят для работы с подключением к внешнему компьютеру. В некоторых видах измерений такой компьютер переключает измерительные функции прибора и дает команды передачи данных для их обработки.
Аналого-цифровые преобразователи. Существуют три основных типа АЦП: интегрирующий, последовательного приближения и параллельный. Интегрирующий АЦП усредняет входной сигнал по времени. Из трех перечисленных типов это самый точный, хотя и самый "медленный". Время преобразования интегрирующего АЦП лежит в диапазоне от 0,001 до 50 с и более, погрешность составляет 0,1-0,0003%. Погрешность АЦП последовательного приближения несколько больше (0,4-0,002%), но зато время преобразования - от ЭЛЕКТРИЧЕСКИЕ ИЗМЕРЕНИЯ10мкс до ЭЛЕКТРИЧЕСКИЕ ИЗМЕРЕНИЯ1 мс. Параллельные АЦП - самые быстродействующие, но и наименее точные: их время преобразования порядка 0,25 нс, погрешность - от 0,4 до 2%.
Методы дискретизации. Сигнал дискретизируется по времени путем быстрого измерения его в отдельные моменты времени и удержания (сохранения) измеренных значений на время преобразования их в цифровую форму. Последовательность полученных дискретных значений может выводиться на дисплей в виде кривой, имеющей форму сигнала; возводя эти значения в квадрат и суммируя, можно вычислять среднеквадратическое значение сигнала; их можно использовать также для вычисления времени нарастания, максимального значения, среднего по времени, частотного спектра и т.д. Дискретизация по времени может производиться либо за один период сигнала ("в реальном времени"), либо (с последовательной или произвольной выборкой) за ряд повторяющихся периодов.
Цифровые вольтметры и мультиметры. Цифровые вольтметры и мультиметры измеряют квазистатическое значение величины и указывают его в цифровой форме. Вольтметры непосредственно измеряют только напряжение, обычно постоянного тока, а мультиметры могут измерять напряжение постоянного и переменного тока, силу тока, сопротивление постоянному току и иногда температуру. Эти самые распространенные контрольно-измерительные приборы общего назначения с погрешностью измерения от 0,2 до 0,001% могут иметь 3,5- или 4,5-значный цифровой дисплей. "Полуцелый" знак (разряд) - это условное указание на то, что дисплей может показывать числа, выходящие за пределы номинального числа знаков. Например, 3,5-значный (3,5-разрядный) дисплей в диапазоне 1-2 В может показывать напряжение до 1,999 В.
Измерители полных сопротивлений. Это специализированные приборы, измеряющие и показывающие емкость конденсатора, сопротивление резистора, индуктивность катушки индуктивности или полное сопротивление (импеданс) соединения конденсатора или катушки индуктивности с резистором. Имеются приборы такого типа для измерения емкости от 0,00001 пФ до 99,999 мкФ, сопротивления от 0,00001 Ом до 99,999 кОм и индуктивности от 0,0001 мГ до 99,999 Г. Измерения могут проводиться на частотах от 5 Гц до 100 МГц, хотя ни один прибор не перекрывает всего диапазона частот. На частотах, близких к 1 кГц, погрешность может составлять лишь 0,02%, но точность снижается вблизи границ диапазонов частоты и измеряемых значений. Большинство приборов могут показывать также производные величины, такие, как добротность катушки или коэффициент потерь конденсатора, вычисляемые по основным измеренным значениям.
АНАЛОГОВЫЕ ПРИБОРЫ
Для измерения напряжения, силы тока и сопротивления на постоянном токе применяются аналоговые магнитоэлектрические приборы с постоянным магнитом и многовитковой подвижной частью. Такие приборы стрелочного типа характеризуются погрешностью от 0,5 до 5%. Они просты и недороги (пример - автомобильные приборы, показывающие ток и температуру), но не применяются там, где требуется сколько-нибудь значительная точность.
Магнитоэлектрические приборы. В таких приборах используется сила взаимодействия магнитного поля с током в витках обмотки подвижной части, стремящаяся повернуть последнюю. Момент этой силы уравновешивается моментом, создаваемым противодействующей пружиной, так что каждому значению тока соответствует определенное положение стрелки на шкале. Подвижная часть имеет форму многовитковой проволочной рамки с размерами от 3ґ5 до 25ґ35 мм и делается как можно более легкой. Подвижная часть, установленная на каменных подшипниках или подвешенная на металлической ленточке, помещается между полюсами сильного постоянного магнита. Две спиральные пружинки, уравновешивающие крутящий момент, служат также токопроводами обмотки подвижной части. Магнитоэлектрический прибор реагирует на ток, проходящий по обмотке его подвижной части, а потому представляет собой амперметр или, точнее, миллиамперметр (так как верхний предел диапазона измерений не превышает примерно 50 мА). Его можно приспособить для измерения токов большей силы, присоединив параллельно обмотке подвижной части шунтирующий резистор с малым сопротивлением, чтобы в обмотку подвижной части ответвлялась лишь малая доля полного измеряемого тока. Такое устройство пригодно для токов, измеряемых многими тысячами ампер. Если последовательно с обмоткой присоединить добавочный резистор, то прибор превратится в вольтметр. Падение напряжения на таком последовательном соединении равно произведению сопротивления резистора на ток, показываемый прибором, так что его шкалу можно проградуировать в вольтах. Чтобы сделать из магнитоэлектрического миллиамперметра омметр, нужно присоединять к нему последовательно измеряемые резисторы и подавать на это последовательное соединение постоянное напряжение, например от батареи питания. Ток в такой схеме не будет пропорционален сопротивлению, а потому необходима специальная шкала, корректирующая нелинейность. Тогда можно будет производить по шкале прямой отсчет сопротивления, хотя и с не очень высокой точностью.
Гальванометры. К магнитоэлектрическим приборам относятся и гальванометры - высокочувствительные приборы для измерения крайне малых токов. В гальванометрах нет подшипников, их подвижная часть подвешена на тонкой ленточке или нити, используется более сильное магнитное поле, а стрелка заменена зеркальцем, приклеенным к нити подвеса (рис. 1). Зеркальце поворачивается вместе с подвижной частью, а угол его поворота оценивается по смещению отбрасываемого им светового зайчика на шкале, установленной на расстоянии около 1 м. Самые чувствительные гальванометры способны давать отклонение по шкале, равное 1 мм, при изменении тока всего лишь на 0,00001 мкА.

РЕГИСТРИРУЮЩИЕ ПРИБОРЫ
Регистрирующие приборы записывают "историю" изменения значения измеряемой величины. К таким приборам наиболее распространенных типов относятся ленточные самописцы, записывающие пером кривую изменения величины на диаграммной бумажной ленте, аналоговые электронные осциллографы, развертывающие кривую процесса на экране электронно-лучевой трубки, и цифровые осциллографы, запоминающие однократные или редко повторяющиеся сигналы. Основное различие между этими приборами - в скорости записи. Ленточные самописцы с их движущимися механическими частями наиболее подходят для регистрации сигналов, изменяющихся за секунды, минуты и еще медленнее. Электронные осциллографы же способны регистрировать сигналы, изменяющиеся за время от миллионных долей секунды до нескольких секунд.
ИЗМЕРИТЕЛЬНЫЕ МОСТЫ
Измерительный мост - это обычно четырехплечая электрическая цепь, составленная из резисторов, конденсаторов и катушек индуктивности, предназначенная для определения отношения параметров этих компонентов. К одной паре противоположных полюсов цепи подключается источник питания, а к другой - нуль-детектор. Измерительные мосты применяются только в тех случаях, когда требуется наивысшая точность измерения. (Для измерений со средней точностью лучше пользоваться цифровыми приборами, поскольку они проще в обращении.) Наилучшие трансформаторные измерительные мосты переменного тока характеризуются погрешностью (измерения отношения) порядка 0,0000001%. Простейший мост для измерения сопротивления носит имя своего изобретателя Ч.Уитстона.
Двойной измерительный мост постоянного тока. К резистору трудно подсоединить медные провода, не привнеся при этом сопротивления контактов порядка 0,0001 Ом и более. В случае сопротивления 1 Ом такой токоподвод вносит ошибку порядка всего лишь 0,01%, но для сопротивления 0,001 Ом ошибка будет составлять 10%. Двойной измерительный мост (мост Томсона), схема которого представлена на рис. 2, предназначен для измерения сопротивления эталонных резисторов малого номинала. Сопротивление таких четырехполюсных эталонных резисторов определяют как отношение напряжения на их потенциальных зажимах (р1, р2 резистора Rs и р3, p4 резистора Rx на рис. 2) к току через их токовые зажимы (с1, с2 и с3, с4). При такой методике сопротивление присоединительных проводов не вносит ошибки в результат измерения искомого сопротивления. Два дополнительных плеча m и n исключают влияние соединительного провода 1 между зажимами с2 и с3. Сопротивления m и n этих плеч подбирают так, чтобы выполнялось равенство M/m = N/n. Затем, изменяя сопротивление Rs, сводят разбаланс к нулю и находят Rx = Rs(N /M).


Измерительные мосты переменного тока. Наиболее распространенные измерительные мосты переменного тока рассчитаны на измерения либо на сетевой частоте 50-60 Гц, либо на звуковых частотах (обычно вблизи 1000 Гц); специализированные же измерительные мосты работают на частотах до 100 МГц. Как правило, в измерительных мостах переменного тока вместо двух плеч, точно задающих отношение напряжений, используется трансформатор. К исключениям из этого правила относится измерительный мост Максвелла - Вина.
Измерительный мост Максвелла - Вина. Такой измерительный мост позволяет сравнивать эталоны индуктивности (L) с эталонами емкости на не известной точно рабочей частоте. Эталоны емкости применяются в измерениях высокой точности, поскольку они конструктивно проще прецизионных эталонов индуктивности, более компактны, их легче экранировать, и они практически не создают внешних электромагнитных полей. Условия равновесия этого измерительного моста таковы: Lx = R2R3C1 и Rx = (R2R3) /R1 (рис. 3). Мост уравновешивается даже в случае "нечистого" источника питания (т.е. источника сигнала, содержащего гармоники основной частоты), если величина Lx не зависит от частоты.



Трансформаторный измерительный мост. Одно из преимуществ измерительных мостов переменного тока - простота задания точного отношения напряжений посредством трансформатора. В отличие от делителей напряжения, построенных из резисторов, конденсаторов или катушек индуктивности, трансформаторы в течение длительного времени сохраняют постоянным установленное отношение напряжений и редко требуют повторной калибровки. На рис. 4 представлена схема трансформаторного измерительного моста для сравнения двух однотипных полных сопротивлений. К недостаткам трансформаторного измерительного моста можно отнести то, что отношение, задаваемое трансформатором, в какой-то степени зависит от частоты сигнала. Это приводит к необходимости проектировать трансформаторные измерительные мосты лишь для ограниченных частотных диапазонов, в которых гарантируется паспортная точность.



где Т - период сигнала Y(t). Максимальное значение Yмакс - это наибольшее мгновенное значение сигнала, а среднее абсолютное значение YAA - абсолютное значение, усредненное по времени. При синусоидальной форме колебаний Yэфф = 0,707Yмакс и YAA = 0,637Yмакс.
Измерение напряжения и силы переменного тока. Почти все приборы для измерения напряжения и силы переменного тока показывают значение, которое предлагается рассматривать как эффективное значение входного сигнала. Однако в дешевых приборах зачастую на самом деле измеряется среднее абсолютное или максимальное значение сигнала, а шкала градуируется так, чтобы показание соответствовало эквивалентному эффективному значению в предположении, что входной сигнал имеет синусоидальную форму. Не следует упускать из виду, что точность таких приборов крайне низка, если сигнал несинусоидален. Приборы, способные измерять истинное эффективное значение сигналов переменного тока, могут быть основаны на одном из трех принципов: электронного умножения, дискретизации сигнала или теплового преобразования. Приборы, основанные на первых двух принципах, как правило, реагируют на напряжение, а тепловые электроизмерительные приборы - на ток. При использовании добавочных и шунтовых резисторов всеми приборами можно измерять как ток, так и напряжение.
Электронное умножение. Возведение в квадрат и усреднение по времени входного сигнала в некотором приближении осуществляются электронными схемами с усилителями и нелинейными элементами для выполнения таких математических операций, как нахождение логарифма и антилогарифма аналоговых сигналов. Приборы такого типа могут иметь погрешность порядка всего лишь 0,009%.
Дискретизация сигнала. Сигнал переменного тока преобразуется в цифровую форму с помощью быстродействующего АЦП. Дискретизированные значения сигнала возводятся в квадрат, суммируются и делятся на число дискретных значений в одном периоде сигнала. Погрешность таких приборов составляет 0,01-0,1%.
Тепловые электроизмерительные приборы. Наивысшую точность измерения эффективных значений напряжения и тока обеспечивают тепловые электроизмерительные приборы. В них используется тепловой преобразователь тока в виде небольшого откачанного стеклянного баллончика с нагревательной проволочкой (длиной 0,5-1 см), к средней части которой крохотной бусинкой прикреплен горячий спай термопары. Бусинка обеспечивает тепловой контакт и одновременно электроизоляцию. При повышении температуры, прямо связанном с эффективным значением тока в нагревательной проволочке, на выходе термопары возникает термо-ЭДС (напряжение постоянного тока). Такие преобразователи пригодны для измерения силы переменного тока с частотой от 20 Гц до 10 МГц. На рис. 5 показана принципиальная схема теплового электроизмерительного прибора с двумя подобранными по параметрам тепловыми преобразователями тока. При подаче на вход схемы напряжения переменного тока Vас на выходе термопары преобразователя ТС1 возникает напряжение постоянного тока, усилитель А создает постоянный ток в нагревательной проволочке преобразователя ТС2, при котором термопара последнего дает такое же напряжение постоянного тока, и обычный прибор постоянного тока измеряет выходной ток.



С помощью добавочного резистора описанный измеритель тока можно превратить в вольтметр. Поскольку тепловые электроизмерительные приборы непосредственно измеряют токи лишь от 2 до 500 мА, для измерения токов большей силы необходимы резисторные шунты.
Измерение мощности и энергии переменного тока. Мощность, потребляемая нагрузкой в цепи переменного тока, равна среднему по времени произведению мгновенных значений напряжения и тока нагрузки. Если напряжение и ток изменяются синусоидально (как это обычно и бывает), то мощность Р можно представить в виде P = EI cosj, где Е и I - эффективные значения напряжения и тока, а j - фазовый угол (угол сдвига) синусоид напряжения и тока. Если напряжение выражается в вольтах, а ток в амперах, то мощность будет выражена в ваттах. Множитель cosj, называемый коэффициентом мощности, характеризует степень синхронности колебаний напряжения и тока. С экономической точки зрения, самая важная электрическая величина - энергия. Энергия W определяется произведением мощности на время ее потребления. В математической форме это записывается так:

Если время (t1 - t2) измеряется в секундах, напряжение е - в вольтах, а ток i - в амперах, то энергия W будет выражена в ватт-секундах, т.е. джоулях (1 Дж = 1 ВтЧс). Если же время измеряется в часах, то энергия - в ватт-часах. На практике электроэнергию удобнее выражать в киловатт-часах (1 кВт*ч = 1000 ВтЧч).
Счетчики электроэнергии с разделением времени. В счетчиках электроэнергии с разделением времени используется весьма своеобразный, но точный метод измерения электрической мощности. Такой прибор имеет два канала. Один канал представляет собой электронный ключ, который пропускает или не пропускает входной сигнал Y (или обращенный входной сигнал -Y) на фильтр нижних частот. Состоянием ключа управляет выходной сигнал второго канала с отношением временных интервалов "закрыто"/"открыто", пропорциональным его входному сигналу. Средний сигнал на выходе фильтра равен среднему по времени произведению двух входных сигналов. Если один входной сигнал пропорционален напряжению на нагрузке, а другой - току нагрузки, то выходное напряжение пропорционально мощности, потребляемой нагрузкой. Погрешность таких счетчиков промышленного изготовления составляет 0,02% на частотах до 3 кГц (лабораторных - порядка всего лишь 0,0001% при 60 Гц). Как приборы высокой точности они применяются в качестве образцовых счетчиков для поверки рабочих средств измерения.
Дискретизирующие ваттметры и счетчики электроэнергии. Такие приборы основаны на принципе цифрового вольтметра, но имеют два входных канала, дискретизирующих параллельно сигналы тока и напряжения. Каждое дискретное значение e(k), представляющее мгновенные значения сигнала напряжения в момент дискретизации, умножается на соответствующее дискретное значение i(k) сигнала тока, полученное в тот же момент времени. Среднее по времени таких произведений есть мощность в ваттах:


Сумматор, накапливающий произведения дискретных значений с течением времени, дает полную электроэнергию в ватт-часах. Погрешность счетчиков электроэнергии может составлять всего лишь 0,01%.
Индукционные счетчики электроэнергии. Индукционный счетчик представляет собой не что иное, как маломощный электродвигатель переменного тока с двумя обмотками - токовой и обмоткой напряжения. Проводящий диск, помещенный между обмотками, вращается под действием крутящего момента, пропорционального потребляемой мощности. Этот момент уравновешивается токами, наводимыми в диске постоянным магнитом, так что частота вращения диска пропорциональна потребляемой мощности. Число оборотов диска за то или иное время пропорционально полной электроэнергии, полученной за это время потребителем. Число оборотов диска считает механический счетчик, который показывает электроэнергию в киловатт-часах. Приборы такого типа широко применяются в качестве бытовых счетчиков электроэнергии. Их погрешность, как правило, составляет 0,5%; они отличаются большим сроком службы при любых допустимых уровнях тока.
- измерения электрических величин: электрического напряжения, электрического сопротивления, силы тока, частоты и фазы переменного тока, мощности тока, электрической энергии, электрического заряда, индуктивности, электрической ёмкости и др.… … Большая советская энциклопедия

электрические измерения - — [В.А.Семенов. Англо русский словарь по релейной защите] Тематики релейная защита EN electrical measurementelectricity metering … Справочник технического переводчика

Э. измерительными аппаратами называют приборы и приспособления, служащие для измерения Э., а также и магнитных величин. Большая часть измерений сводится к определению силы тока, напряжения (разности потенциалов) и количества электричества.… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона - совокупности соединенных определенным образом элементов и устройств, образующих путь для прохождения электрического тока. Теория цепей раздел теоретической электротехники, в котором рассматриваются математические методы вычисления электрических… … Энциклопедия Кольера

измерения аэродинамические Энциклопедия «Авиация»

измерения аэродинамические - Рис. 1. измерения аэродинамические — процесс нахождения опытным путём значений физических величин в аэродинамическом эксперименте с помощью соответствующих технических средств. Различают 2 типа И. а.: статические и динамические. При… … Энциклопедия «Авиация»

Электрические - 4. Электрические нормы проектирования радиотрансляционных сетей. М., Связьиздат, 1961. 80 с.

При изучении электротехники приходится иметь дело с электрическим, магнитными и механическими величинами и измерять эти величины.

Измерить электрическую, магнитную или какую-либо иную величину - это значит сравнить ее с другой однородной величиной, принятой за единицу.

В этой статье рассмотрена классификация измерений, наиболее важная для . К такой классификации можно отнести классификацию измерений с методологической точки зрения, т. е. в зависимости от общих приемов получения результатов измерений (виды или классы измерений), классификацию измерений в зависимости от использования принципов и средств измерений (методы измерений) и классификацию измерений в зависимости от динамики измеряемых величин.

Виды электрических измерений

В зависимости от общих приемов получения результата измерения делятся на следующие виды: прямые, косвенные и совместные.

К прямым измерениям относятся те, результат которых получается непосредственно из опытных данных. Прямое измерение условно можно выразить формулой Y = Х, где Y - искомое значение измеряемой величины; X -значение, непосредственно получаемое из опытных данных. К этому виду измерений относятся измерения различных физических величин при помощи приборов, градуированных в установленных единицах.

Например, измерения силы тока амперметром, температуры - термометром и т. д. К этому виду измерений относятся и измерения, при которых искомое значение величины определяется непосредственным сравнением ее с мерой. Применяемые средства и простота (или сложность) эксперимента при отнесении измерения к прямому не учитываются.

Косвенным называется такое измерение, при котором искомое значение величины находят на основании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям. При косвенных измерениях числовое значение измеряемой величины определяется путем вычисления по формуле Y = F(Xl, Х2 ... Хn ), где Y - искомое значение измеряемой величины; Х1 , Х2, Хn - значения измеренных величин. В качестве примера косвенных измерений можно указать на измерение мощности в цепях постоянного тока амперметром и вольтметром.

Совместными измерениями называются такие, при которых искомые значения разноименных величин определяются путем решения системы уравнений, связывающих значения искомых величин с непосредственно измеренными величинами. В качестве примера совместных измерений можно привести определение коэффициентов в формуле, связывающей сопротивление резистора с его температурой: Rt = R20

Методы электрических измерений

В зависимости от совокупности приемов использования принципов и средств измерений все методы делятся на метод непосредственной оценки и методы сравнения.

Сущность метода непосредственной оценки заключается в том, что о значении измеряемой величины судят по показанию одного (прямые измерения) или нескольких (косвенные измерения) приборов, заранее проградуированных в единицах измеряемой величины или в единицах других величин, от которых зависит измеряемая величина.

Простейшим примером метода непосредственной оценки может служить измерение какой-либо величины одним прибором, шкала которого проградуирована в соответствующих единицах.

Вторая большая группа методов электрических измерений объединена под общим названием методов сравнения . К ним относятся все те методы электрических измерений, при которых измеряемая величина сравнивается с величиной, воспроизводимой мерой. Таким образом, отличительной чертой методов сравнения является непосредственное участие мер в процессе измерения.

Методы сравнения делятся на следующие: нулевой, дифференциальный, замещения и совпадения.

Нулевой метод - это метод сравнения измеряемой величины с мерой, при котором результирующий эффект воздействия величин на индикатор доводится до нуля. Таким образом, при достижении равновесия наблюдается исчезновение определенного явления, например тока в участке цепи или напряжения на нем, что может быть зафиксировано при помощи служащих для этой цели приборов - нуль-индикаторов. Вследствие высокой чувствительности нуль-индикаторов, а также потому, что меры могут быть выполнены с большой точностью, получается и большая точность измерений.

Примером применения нулевого метода может быть измерение электрического сопротивления мостом с полным его уравновешиванием.

При дифференциальном методе , так же как и при нулевом, измеряемая величина сравнивается непосредственно или косвенно с мерой, а о значении измеряемой величины в результате сравнения судят по разности одновременно производимых этими величинами эффектов и по известной величине, воспроизводимой мерой. Таким образом, в дифференциальном методе происходит неполное уравновешивание измеряемой величины, и в этом заключается отличие дифференциального метода от нулевого.

Дифференциальный метод сочетает в себе часть признаков метода непосредственной оценки и часть признаков нулевого метода. Он может дать весьма точный результат измерения, если только измеряемая величина и мера мало отличаются друг от друга.

Например, если разность этих двух величин равна 1 % и измеряется с погрешностью до 1 %, то тем самым погрешность измерения искомой величины уменьшается до 0,01%, если не учитывать погрешности меры. Примером применения дифференциального метода может служить измерение вольтметром разности двух напряжений, из которых одно известно с большой точностью, а другое является искомой величиной.

Метод замещения заключается в поочередном измерении искомой величины прибором и измерении этим же прибором меры, воспроизводящей однородную с измеряемой величину. По результатам двух измерений может быть вычислена искомая величина. Вследствие того что оба измерения делаются одним и тем же прибором в одинаковых внешних условиях, а искомая величина определяется по отношению показаний прибора, в значительной мере уменьшается погрешность результата измерения. Так как погрешность прибора обычно неодинакова в различных точках шкалы, наибольшая точность измерения получается при одинаковых показаниях прибора.

Примером применения метода замещения может быть измерение сравнительно большого путем поочередного измерения силы тока, протекающего через контролируемый резистор и образцовый. Питание цепи при измерениях должно производиться от одного и того же источника тока. Сопротивление источника тока и прибора, измеряющего ток, должно быть очень мало по сравнению с изменяемым и образцовым сопротивлениями.

Метод совпадений - это такой метод, при котором разность между измеряемой величиной и величиной, воспроизводимой мерой, измеряют, используя совпадение отметок шкал или периодических сигналов. Этот метод широко применяется в практике неэлектрических измерений.

Примером может служить измерение длины . В электрических измерениях в качестве примера можно привести измерение частоты вращения тела стробоскопом.

Укажем еще классификацию измерений по признаку изменения во времени измеряемой величины . В зависимости от того, изменяется ли измеряемая величина во времени или остается в процессе измерения неизменной, различаются статические и динамические измерения. Статическими называются измерения постоянных или установившихся значений. К ним относятся и измерения действующих и амплитудных значений величин, но в установившемся режиме.

Если измеряются мгновенные значения изменяющихся во времени величин, то измерения называются динамическими . Если при динамических измерениях средства измерений позволяют непрерывно следить за значениями измеряемой величины, такие измерения называются непрерывными.

Можно осуществить измерения какой-либо величины путем измерений ее значений в некоторые моменты времени t1 , t2 и т. д. В результате окажутся известными не все значения измеряемой величины, а лишь значения в выбранные моменты времени. Такие измерения называются дискретными .