20.09.2019

Статья теория вероятностей. Средства абстракции от вероятностного пространства. Функция распределения и плотность. Независимые, противоположные и произвольные события


Мама мыла раму


Под занавес продолжительных летних каникул пришло время потихоньку возвращаться к высшей математике и торжественно открыть пустой вёрдовский файл, чтобы приступить к созданию нового раздела – . Признаюсь, нелегко даются первые строчки, но первый шаг – это пол пути, поэтому я предлагаю всем внимательно проштудировать вводную статью, после чего осваивать тему будет в 2 раза проще! Ничуть не преувеличиваю. …Накануне очередного 1 сентября вспоминается первый класс и букварь…. Буквы складываются в слоги, слоги в слова, слова в короткие предложения – Мама мыла раму. Совладать с тервером и математической статистикой так же просто, как научиться читать! Однако для этого необходимо знать ключевые термины, понятия и обозначения, а также некоторые специфические правила, которым и посвящён данный урок.

Но сначала примите мои поздравления с началом (продолжением, завершением, нужное отметить) учебного года и примите подарок. Лучший подарок – это книга, и для самостоятельной работы я рекомендую следующую литературу:

1) Гмурман В.Е. Теория вероятностей и математическая статистика

Легендарное учебное пособие, выдержавшее более десяти переизданий. Отличается доходчивостью и предельной простой изложения материала, а первые главы так и вовсе доступны, думаю, уже для учащихся 6-7-х классов.

2) Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике

Решебник того же Владимира Ефимовича с подробно разобранными примерами и задачами.

ОБЯЗАТЕЛЬНО закачайте обе книги из Интернета или раздобудьте их бумажные оригиналы! Подойдёт и версия 60-70-х годов, что даже лучше для чайников. Хотя фраза «теория вероятностей для чайников» звучит довольно нелепо, поскольку почти всё ограничивается элементарными арифметическими действиями. Проскакивают, правда, местами производные и интегралы , но это только местами.

Я постараюсь достичь той же ясности изложения, но должен предупредить, что мой курс ориентирован на решение задач и теоретические выкладки сведены к минимуму. Таким образом, если вам нужна развёрнутая теория, доказательства теорем (теорем-теорем!), пожалуйста, обратитесь к учебнику. Ну, а кто хочет научиться решать задачи по теории вероятностей и математической статистике в самые короткие сроки , следуйте за мной!

Для начала хватит =)

По мере прочтения статей целесообразно знакомиться (хотя бы бегло) с дополнительными задачами рассмотренных видов. На странице Готовые решения по высшей математике будут размещаться соответствующие pdf-ки с примерами решений. Также значительную помощь окажут ИДЗ 18.1 Рябушко (попроще) и прорешанные ИДЗ по сборнику Чудесенко (посложнее).

1) Суммой двух событий и называется событие которое состоит в том, что наступит или событие или событие или оба события одновременно. В том случае, если события несовместны , последний вариант отпадает, то есть может наступить или событие или событие .

Правило распространяется и на бОльшее количество слагаемых, например, событие состоит в том, что произойдёт хотя бы одно из событий , а если события несовместны то одно и только одно событие из этой суммы: или событие , или событие , или событие , или событие , или событие .

Примеров масса:

События (при броске игральной кости не выпадет 5 очков) состоит в том, что выпадет или 1, или 2, или 3, или 4, или 6 очков.

Событие (выпадет не более двух очков) состоит в том, что появится 1 или 2 очка .

Событие (будет чётное число очков) состоит в том, что выпадет или 2 или 4 или 6 очков.

Событие заключается в том, что из колоды будет извлечена карта красной масти (черва или бубна), а событие – в том, что будет извлечена «картинка» (валет или дама или король или туз).

Чуть занятнее дело с совместными событиями:

Событие состоит в том, что из колоды будет извлечена трефа или семёрка или семёрка треф. Согласно данному выше определению, хотя бы что-то – или любая трефа или любая семёрка или их «пересечение» – семёрка треф. Легко подсчитать, что данному событию соответствует 12 элементарных исходов (9 трефовых карт + 3 оставшиеся семёрки).

Событие состоит в том, что завтра в 12.00 наступит ХОТЯ БЫ ОДНО из суммируемых совместных событий , а именно:

– или будет только дождь / только гроза / только солнце;
– или наступит только какая-нибудь пара событий (дождь + гроза / дождь + солнце / гроза + солнце);
– или все три события появятся одновременно.

То есть, событие включает в себя 7 возможных исходов.

Второй столп алгебры событий:

2) Произведением двух событий и называют событие , которое состоит в совместном появлении этих событий, иными словами, умножение означает, что при некоторых обстоятельствах наступит и событие , и событие . Аналогичное утверждение справедливо и для бОльшего количества событий, так, например, произведение подразумевает, что при определённых условиях произойдёт и событие , и событие , и событие , …, и событие .

Рассмотрим испытание, в котором подбрасываются две монеты и следующие события:

– на 1-й монете выпадет орёл;
– на 1-й монете выпадет решка;
– на 2-й монете выпадет орёл;
– на 2-й монете выпадет решка.

Тогда:
и на 2-й) выпадет орёл;
– событие состоит в том, что на обеих монетах (на 1-й и на 2-й) выпадет решка;
– событие состоит в том, что на 1-й монете выпадет орёл и на 2-й монете решка;
– событие состоит в том, что на 1-й монете выпадет решка и на 2-й монете орёл.

Нетрудно заметить, что события несовместны (т.к. не может, например, выпасть 2 орла и в то же самое время 2 решки) и образуют полную группу (поскольку учтены все возможные исходы броска двух монет) . Давайте просуммируем данные события: . Как интерпретировать эту запись? Очень просто – умножение означает логическую связку И , а сложение – ИЛИ . Таким образом, сумму легко прочитать понятным человеческим языком: «выпадут два орла или две решки или на 1-й монете выпадет орёл и на 2-й решка или на 1-й монете выпадет решка и на 2-й монете орёл »

Это был пример, когда в одном испытании задействовано несколько объектов, в данном случае – две монеты. Другая распространенная в практических задачах схема – это повторные испытания , когда, например, один и тот же игральный кубик бросается 3 раза подряд. В качестве демонстрации рассмотрим следующие события:

– в 1-м броске выпадет 4 очка;
– во 2-м броске выпадет 5 очков;
– в 3-м броске выпадет 6 очков.

Тогда событие состоит в том, что в 1-м броске выпадет 4 очка и во 2-м броске выпадет 5 очков и в 3-м броске выпадет 6 очков. Очевидно, что в случае с кубиком будет значительно больше комбинаций (исходов), чем, если бы мы подбрасывали монету.

…Понимаю, что, возможно, разбираются не очень интересные примеры, но это часто встречающиеся в задачах вещи и от них никуда не деться. Помимо монетки, кубика и колоды карт вас поджидают урны с разноцветными шарами, несколько анонимов, стреляющих по мишени, и неутомимый рабочий, который постоянно вытачивает какие-то детали =)

Вероятность события

Вероятность события – это центральное понятие теории вероятностей. …Убийственно логичная вещь, но с чего-то надо было начинать =) Существует несколько подходов к её определению:

;
Геометрическое определение вероятности ;
Статистическое определение вероятности .

В данной статье я остановлюсь на классическом определении вероятностей, которое находит наиболее широкое применение в учебных заданиях.

Обозначения . Вероятность некоторого события обозначается большой латинской буквой , а само событие берётся в скобки, выступая в роли своеобразного аргумента. Например:


Также для обозначения вероятности широко используется маленькая буква . В частности, можно отказаться от громоздких обозначений событий и их вероятностей в пользу следующей стилистики::

– вероятность того, что в результате броска монеты выпадет «орёл»;
– вероятность того, что в результате броска игральной кости выпадет 5 очков;
– вероятность того, что из колоды будет извлечена карта трефовой масти.

Данный вариант популярен при решении практических задач, поскольку позволяет заметно сократить запись решения. Как и в первом случае, здесь удобно использовать «говорящие» подстрочные/надстрочные индексы.

Все уже давно догадались о числах, которые я только что записал выше, и сейчас мы узнаем, как они получились:

Классическое определение вероятности :

Вероятностью наступления события в некотором испытании называют отношение , где:

общее число всех равновозможных , элементарных исходов этого испытания, которые образуют полную группу событий ;

– количество элементарных исходов, благоприятствующих событию .

При броске монеты может выпасть либо орёл, либо решка – данные события образуют полную группу , таким образом, общее число исходов ; при этом, каждый из них элементарен и равновозможен . Событию благоприятствует исход (выпадение орла). По классическому определению вероятностей: .

Аналогично – в результате броска кубика может появиться элементарных равновозможных исходов, образующих полную группу, а событию благоприятствует единственный исход (выпадение пятёрки). Поэтому: .ЭТОГО ДЕЛАТЬ НЕ ПРИНЯТО (хотя не возбраняется прикидывать проценты в уме).

Принято использовать доли единицы , и, очевидно, что вероятность может изменяться в пределах . При этом если , то событие является невозможным , если – достоверным , а если , то речь идёт о случайном событии.

! Если в ходе решения любой задачи у вас получилось какое-то другое значение вероятности – ищите ошибку!

При классическом подходе к определению вероятности крайние значения (ноль и единица) получаются посредством точно таких же рассуждений. Пусть из некой урны, в которой находятся 10 красных шаров, наугад извлекается 1 шар. Рассмотрим следующие события:

в единичном испытании маловозможное событие не произойдёт .

Именно поэтому Вы не сорвёте в лотерее Джек-пот, если вероятность этого события, скажем, равна 0,00000001. Да-да, именно Вы – с единственным билетом в каком-то конкретном тираже. Впрочем, бОльшее количество билетов и бОльшее количество розыгрышей Вам особо не помогут. ...Когда я рассказываю об этом окружающим, то почти всегда в ответ слышу: «но ведь кто-то выигрывает». Хорошо, тогда давайте проведём следующий эксперимент: пожалуйста, сегодня или завтра купите билет любой лотереи (не откладывайте!). И если выиграете... ну, хотя бы больше 10 килорублей, обязательно отпишитесь – я объясню, почему это произошло. За процент, разумеется =) =)

Но грустить не нужно, потому что есть противоположный принцип: если вероятность некоторого события очень близка к единице, то в отдельно взятом испытании оно практически достоверно произойдёт. Поэтому перед прыжком с парашютом не надо бояться, наоборот – улыбайтесь! Ведь должны сложиться совершенно немыслимые и фантастические обстоятельства, чтобы отказали оба парашюта.

Хотя всё это лирика, поскольку в зависимости от содержания события первый принцип может оказаться весёлым, а второй – грустным; или вообще оба параллельными.

Пожалуй, пока достаточно, на уроке Задачи на классическое определение вероятности мы выжмем максимум из формулы . В заключительной же части этой статьи рассмотрим одну важную теорему:

Сумма вероятностей событий, которые образуют полную группу, равна единице . Грубо говоря, если события образуют полную группу, то со 100%-й вероятностью какое-то из них произойдёт. В самом простом случае полную группу образуют противоположные события, например:

– в результате броска монеты выпадет орёл;
– в результате броска монеты выпадет решка.

По теореме:

Совершенно понятно, что данные события равновозможны и их вероятности одинаковы .

По причине равенства вероятностей равновозможные события часто называют равновероятными . А вот и скороговорка на определение степени опьянения получилась =)

Пример с кубиком: события противоположны, поэтому .

Рассматриваемая теорема удобна тем, что позволяет быстро найти вероятность противоположного события. Так, если известна вероятность того, что выпадет пятёрка, легко вычислить вероятность того, что она не выпадет:

Это гораздо проще, чем суммировать вероятности пяти элементарных исходов. Для элементарных исходов, к слову, данная теорема тоже справедлива:
. Например, если – вероятность того, что стрелок попадёт в цель, то – вероятность того, что он промахнётся.

! В теории вероятностей буквы и нежелательно использовать в каких-то других целях.

В честь Дня Знаний я не буду задавать домашнее задание =), но очень важно, чтобы вы могли ответить на следующие вопросы:

– Какие виды событий существуют?
– Что такое случайность и равновозможность события?
– Как вы понимаете термины совместность/несовместность событий?
– Что такое полная группа событий, противоположные события?
– Что означает сложение и умножение событий?
– В чём суть классического определения вероятности?
– Чем полезна теорема сложения вероятностей событий, образующих полную группу?

Нет, зубрить ничего не надо, это всего лишь азы теории вероятностей – своеобразный букварь, который довольно быстро уложится в голове. И чтобы это произошло как можно скорее, предлагаю ознакомиться с уроками

Как к свойствам реальных событий, и они формулировались в наглядных представлениях. Самые ранние работы учёных в области теории вероятностей относятся к XVII веку. Исследуя прогнозирование выигрыша в азартных играх, Блез Паскаль и Пьер Ферма открыли первые вероятностные закономерности, возникающие при бросании костей . Под влиянием поднятых и рассматриваемых ими вопросов решением тех же задач занимался и Христиан Гюйгенс . При этом с перепиской Паскаля и Ферма он знаком не был, поэтому методику решения изобрёл самостоятельно. Его работа, в которой вводятся основные понятия теории вероятностей (понятие вероятности как величины шанса; математическое ожидание для дискретных случаев, в виде цены шанса), а также используются теоремы сложения и умножения вероятностей (не сформулированные явно), вышла в печатном виде на двадцать лет раньше (1657 год) издания писем Паскаля и Ферма (1679 год) .

Важный вклад в теорию вероятностей внёс Якоб Бернулли : он дал доказательство закона больших чисел в простейшем случае независимых испытаний. В первой половине XIX века теория вероятностей начинает применяться к анализу ошибок наблюдений; Лаплас и Пуассон доказали первые предельные теоремы. Во второй половине XIX века основной вклад внесли русские учёные П. Л. Чебышёв , А. А. Марков и А. М. Ляпунов . В это время были доказаны закон больших чисел , центральная предельная теорема , а также разработана теория цепей Маркова . Современный вид теория вероятностей получила благодаря аксиоматизации , предложенной Андреем Николаевичем Колмогоровым . В результате теория вероятностей приобрела строгий математический вид и окончательно стала восприниматься как один из разделов математики .

Основные понятия теории

См. также

Напишите отзыв о статье "Теория вероятностей"

Примечания

Вводные ссылки

  • Вероятностей теория // Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров . - 3-е изд. - М . : Советская энциклопедия, 1969-1978.
  • - статья из энциклопедии «Кругосвет»

Литература

А

  • Ахтямов, А. М. «Экономико-математические методы»: учеб. пособие Башк. гос. ун-т. - Уфа: БГУ, 2007.
  • Ахтямов, А. М. «Теория вероятностей». - М.: Физматлит, 2009

Б

  • Боровков, А. А. «Математическая статистика» , М.: Наука, 1984.
  • Боровков, А. А. «Теория вероятностей» , М.: Наука, 1986.
  • Булдык, Г. М. , Мн., Высш. шк., 1989.
  • Булинский, А. В., Ширяев, А. Н. «Теория случайных процессов» , М.: Физматлит, 2003.
  • Бекарева, Н. Д. «Теория вероятностей. Конспект лекций» , Новосибирск НГТУ
  • Баврин, И. И. « Высшая математика» (Часть 2 «Элементы теории вероятностей и математической статистики»), М.: Наука, 2000.

В

  • Вентцель Е. С. Теория вероятностей. - М.: Наука, 1969. - 576 с.
  • Вентцель Е. С. Теория вероятностей. - 10-е изд., стер.. - М .: «Академия» , 2005. - 576 с. - ISBN 5-7695-2311-5 .

Г

  • Гихман И. И., Скороход А. В. Введение в теорию случайных процессов. - М.: Наука, 1977.
  • Гмурман, В. Е. «Теория вероятностей и математическая статистика» : Учеб. пособие - 12-е изд., перераб.- М.: Высшее образование, 2006.-479 с.:ил (Основы наук).
  • Гмурман, В. Е. «Руководство к решению задач по теории вероятностей и математической статистике» : Учеб. пособие - 11-е изд., перераб. - М.: Высшее образование, 2006.-404 с. (Основы наук).
  • Гнеденко, Б. В. «Курс теории вероятностей» , - М.: Наука, 1988.
  • Гнеденко, Б. В. «Курс теории вероятностей» , УРСС. М.: 2001.
  • Гнеденко Б. В., Хинчин А. Я. , 1970.
  • Гурский Е. И. «Сборник задач по теории вероятностей и математической статистике» , - Минск: Высшая школа, 1975.

Д

  • П. Е. Данко, А. Г. Попов, Т. Я. Кожевников. Высшая математика в упражнениях и задачах. (В 2-х частях)- М.: Высш.шк, 1986.

Е

  • А. В. Ефимов, А. Е. Поспелов и др. 4 часть // Сборник задач по математике для втузов. - 3-е изд., перераб. и дополн.. - М .: «Физматлит », 2003. - Т. 4. - 432 с. - ISBN 5-94052-037-5 .

К

  • Колемаев, В. А. и др. «Теория вероятностей и математическая статистика» , - М.: Высшая школа, 1991.
  • Колмогоров, А. Н. «Основные понятия теории вероятностей» , М.: Наука, 1974.
  • Коршунов, Д. А., Фосс, С. Г. «Сборник задач и упражнений по теории вероятностей» , Новосибирск, 1997.
  • Коршунов, Д. А., Чернова, Н. И. «Сборник задач и упражнений по математической статистике» , Новосибирск. 2001.
  • Кремер Н. Ш. Теория вероятностей и математическая статистика: Учебник для ВУЗов. - 2- изд., перераб. и доп.-М:ЮНИТИ-ДАНА, 2004. - 573 с.
  • Кузнецов, А. В. «Применение критериев согласия при математическом моделировании экономических процессов» , Мн.: БГИНХ, 1991.

Л

  • Лихолетов И. И., Мацкевич И. Е. «Руководство к решению задач по высшей математике, теории вероятностей и математической статистике» , Мн.: Выш. шк., 1976.
  • Лихолетов И. И. «Высшая математика, теория вероятностей и математическая статистика» , Мн.: Выш. шк., 1976.
  • Лоэв М.В «Теория вероятностей» , - М.: Издательство иностранной литературы, 1962.

М

  • Маньковский Б. Ю., «Таблица вероятности».
  • Мацкевич И. П., Свирид Г. П. «Высшая математика. Теория вероятностей и математическая статистика» , Мн.: Выш. шк., 1993.
  • Мацкевич И. П., Свирид Г. П., Булдык Г. М. «Сборник задач и упражнений по высшей математике. Теория вероятностей и математическая статистика» , Мн.: Выш. шк., 1996.
  • Мейер П.-А. Вероятность и потенциалы. Издательство Мир, Москва, 1973.
  • Млодинов Л.

П

  • Прохоров, А. В., В. Г. Ушаков, Н. Г. Ушаков. «Задачи по теории вероятностей» , Наука. М.: 1986.
  • Прохоров Ю. В., Розанов Ю. А. «Теория вероятностей» , - М.: Наука, 1967.
  • Пугачев, В. С. «Теория вероятностей и математическая статистика» , Наука. М.: 1979.

Р

  • Ротарь В. И., «Теория вероятностей» , - М.: Высшая школа, 1992.

С

  • Свешников А. А. и др., «Сборник задач по теории вероятностей, математической статистике и теории случайных функций» , - М.: Наука, 1970.
  • Свирид, Г. П., Макаренко, Я. С., Шевченко, Л. И. «Решение задач математической статистики на ПЭВМ» , Мн., Выш. шк., 1996.
  • Севастьянов Б. А., «Курс теории вероятностей и математической статистики» , - М.: Наука, 1982.
  • Севастьянов, Б. А., Чистяков, В. П., Зубков, А. М. «Сборник задач по теории вероятностей» , М.: Наука, 1986.
  • Соколенко А. И., «Высшая математика» , учебник. М.: Академия, 2002.

Ф

  • Феллер, В. «Введение в теорию вероятностей и её приложения» .

Х

  • Хамитов, Г. П., Ведерникова, Т. И. «Вероятности и статистики» , БГУЭП. Иркутск.: 2006.

Ч

  • Чистяков, В. П. «Курс теории вероятностей» , М., 1982.
  • Чернова, Н. И. «Теория вероятностей», Новосибирск. 2007.

Ш

  • Шейнин О. Б. Берлин: NG Ferlag, 2005, 329 с.
  • Ширяев, А. Н. «Вероятность» , Наука. М.: 1989.
  • Ширяев, А. Н. «Основы стохастической финансовой математики В 2-х т.» , ФАЗИС. М.: 1998.

Отрывок, характеризующий Теория вероятностей

– Ведь у нас есть хлеб господский, братнин? – спросила она.
– Господский хлеб весь цел, – с гордостью сказал Дрон, – наш князь не приказывал продавать.
– Выдай его мужикам, выдай все, что им нужно: я тебе именем брата разрешаю, – сказала княжна Марья.
Дрон ничего не ответил и глубоко вздохнул.
– Ты раздай им этот хлеб, ежели его довольно будет для них. Все раздай. Я тебе приказываю именем брата, и скажи им: что, что наше, то и ихнее. Мы ничего не пожалеем для них. Так ты скажи.
Дрон пристально смотрел на княжну, в то время как она говорила.
– Уволь ты меня, матушка, ради бога, вели от меня ключи принять, – сказал он. – Служил двадцать три года, худого не делал; уволь, ради бога.
Княжна Марья не понимала, чего он хотел от нее и от чего он просил уволить себя. Она отвечала ему, что она никогда не сомневалась в его преданности и что она все готова сделать для него и для мужиков.

Через час после этого Дуняша пришла к княжне с известием, что пришел Дрон и все мужики, по приказанию княжны, собрались у амбара, желая переговорить с госпожою.
– Да я никогда не звала их, – сказала княжна Марья, – я только сказала Дронушке, чтобы раздать им хлеба.
– Только ради бога, княжна матушка, прикажите их прогнать и не ходите к ним. Все обман один, – говорила Дуняша, – а Яков Алпатыч приедут, и поедем… и вы не извольте…
– Какой же обман? – удивленно спросила княжна
– Да уж я знаю, только послушайте меня, ради бога. Вот и няню хоть спросите. Говорят, не согласны уезжать по вашему приказанию.
– Ты что нибудь не то говоришь. Да я никогда не приказывала уезжать… – сказала княжна Марья. – Позови Дронушку.
Пришедший Дрон подтвердил слова Дуняши: мужики пришли по приказанию княжны.
– Да я никогда не звала их, – сказала княжна. – Ты, верно, не так передал им. Я только сказала, чтобы ты им отдал хлеб.
Дрон, не отвечая, вздохнул.
– Если прикажете, они уйдут, – сказал он.
– Нет, нет, я пойду к ним, – сказала княжна Марья
Несмотря на отговариванье Дуняши и няни, княжна Марья вышла на крыльцо. Дрон, Дуняша, няня и Михаил Иваныч шли за нею. «Они, вероятно, думают, что я предлагаю им хлеб с тем, чтобы они остались на своих местах, и сама уеду, бросив их на произвол французов, – думала княжна Марья. – Я им буду обещать месячину в подмосковной, квартиры; я уверена, что Andre еще больше бы сделав на моем месте», – думала она, подходя в сумерках к толпе, стоявшей на выгоне у амбара.
Толпа, скучиваясь, зашевелилась, и быстро снялись шляпы. Княжна Марья, опустив глаза и путаясь ногами в платье, близко подошла к ним. Столько разнообразных старых и молодых глаз было устремлено на нее и столько было разных лиц, что княжна Марья не видала ни одного лица и, чувствуя необходимость говорить вдруг со всеми, не знала, как быть. Но опять сознание того, что она – представительница отца и брата, придало ей силы, и она смело начала свою речь.
– Я очень рада, что вы пришли, – начала княжна Марья, не поднимая глаз и чувствуя, как быстро и сильно билось ее сердце. – Мне Дронушка сказал, что вас разорила война. Это наше общее горе, и я ничего не пожалею, чтобы помочь вам. Я сама еду, потому что уже опасно здесь и неприятель близко… потому что… Я вам отдаю все, мои друзья, и прошу вас взять все, весь хлеб наш, чтобы у вас не было нужды. А ежели вам сказали, что я отдаю вам хлеб с тем, чтобы вы остались здесь, то это неправда. Я, напротив, прошу вас уезжать со всем вашим имуществом в нашу подмосковную, и там я беру на себя и обещаю вам, что вы не будете нуждаться. Вам дадут и домы и хлеба. – Княжна остановилась. В толпе только слышались вздохи.
– Я не от себя делаю это, – продолжала княжна, – я это делаю именем покойного отца, который был вам хорошим барином, и за брата, и его сына.
Она опять остановилась. Никто не прерывал ее молчания.
– Горе наше общее, и будем делить всё пополам. Все, что мое, то ваше, – сказала она, оглядывая лица, стоявшие перед нею.
Все глаза смотрели на нее с одинаковым выражением, значения которого она не могла понять. Было ли это любопытство, преданность, благодарность, или испуг и недоверие, но выражение на всех лицах было одинаковое.
– Много довольны вашей милостью, только нам брать господский хлеб не приходится, – сказал голос сзади.
– Да отчего же? – сказала княжна.
Никто не ответил, и княжна Марья, оглядываясь по толпе, замечала, что теперь все глаза, с которыми она встречалась, тотчас же опускались.
– Отчего же вы не хотите? – спросила она опять.
Никто не отвечал.
Княжне Марье становилось тяжело от этого молчанья; она старалась уловить чей нибудь взгляд.
– Отчего вы не говорите? – обратилась княжна к старому старику, который, облокотившись на палку, стоял перед ней. – Скажи, ежели ты думаешь, что еще что нибудь нужно. Я все сделаю, – сказала она, уловив его взгляд. Но он, как бы рассердившись за это, опустил совсем голову и проговорил:
– Чего соглашаться то, не нужно нам хлеба.
– Что ж, нам все бросить то? Не согласны. Не согласны… Нет нашего согласия. Мы тебя жалеем, а нашего согласия нет. Поезжай сама, одна… – раздалось в толпе с разных сторон. И опять на всех лицах этой толпы показалось одно и то же выражение, и теперь это было уже наверное не выражение любопытства и благодарности, а выражение озлобленной решительности.
– Да вы не поняли, верно, – с грустной улыбкой сказала княжна Марья. – Отчего вы не хотите ехать? Я обещаю поселить вас, кормить. А здесь неприятель разорит вас…
Но голос ее заглушали голоса толпы.
– Нет нашего согласия, пускай разоряет! Не берем твоего хлеба, нет согласия нашего!
Княжна Марья старалась уловить опять чей нибудь взгляд из толпы, но ни один взгляд не был устремлен на нее; глаза, очевидно, избегали ее. Ей стало странно и неловко.
– Вишь, научила ловко, за ней в крепость иди! Дома разори да в кабалу и ступай. Как же! Я хлеб, мол, отдам! – слышались голоса в толпе.
Княжна Марья, опустив голову, вышла из круга и пошла в дом. Повторив Дрону приказание о том, чтобы завтра были лошади для отъезда, она ушла в свою комнату и осталась одна с своими мыслями.

Долго эту ночь княжна Марья сидела у открытого окна в своей комнате, прислушиваясь к звукам говора мужиков, доносившегося с деревни, но она не думала о них. Она чувствовала, что, сколько бы она ни думала о них, она не могла бы понять их. Она думала все об одном – о своем горе, которое теперь, после перерыва, произведенного заботами о настоящем, уже сделалось для нее прошедшим. Она теперь уже могла вспоминать, могла плакать и могла молиться. С заходом солнца ветер затих. Ночь была тихая и свежая. В двенадцатом часу голоса стали затихать, пропел петух, из за лип стала выходить полная луна, поднялся свежий, белый туман роса, и над деревней и над домом воцарилась тишина.
Одна за другой представлялись ей картины близкого прошедшего – болезни и последних минут отца. И с грустной радостью она теперь останавливалась на этих образах, отгоняя от себя с ужасом только одно последнее представление его смерти, которое – она чувствовала – она была не в силах созерцать даже в своем воображении в этот тихий и таинственный час ночи. И картины эти представлялись ей с такой ясностью и с такими подробностями, что они казались ей то действительностью, то прошедшим, то будущим.
То ей живо представлялась та минута, когда с ним сделался удар и его из сада в Лысых Горах волокли под руки и он бормотал что то бессильным языком, дергал седыми бровями и беспокойно и робко смотрел на нее.
«Он и тогда хотел сказать мне то, что он сказал мне в день своей смерти, – думала она. – Он всегда думал то, что он сказал мне». И вот ей со всеми подробностями вспомнилась та ночь в Лысых Горах накануне сделавшегося с ним удара, когда княжна Марья, предчувствуя беду, против его воли осталась с ним. Она не спала и ночью на цыпочках сошла вниз и, подойдя к двери в цветочную, в которой в эту ночь ночевал ее отец, прислушалась к его голосу. Он измученным, усталым голосом говорил что то с Тихоном. Ему, видно, хотелось поговорить. «И отчего он не позвал меня? Отчего он не позволил быть мне тут на месте Тихона? – думала тогда и теперь княжна Марья. – Уж он не выскажет никогда никому теперь всего того, что было в его душе. Уж никогда не вернется для него и для меня эта минута, когда бы он говорил все, что ему хотелось высказать, а я, а не Тихон, слушала бы и понимала его. Отчего я не вошла тогда в комнату? – думала она. – Может быть, он тогда же бы сказал мне то, что он сказал в день смерти. Он и тогда в разговоре с Тихоном два раза спросил про меня. Ему хотелось меня видеть, а я стояла тут, за дверью. Ему было грустно, тяжело говорить с Тихоном, который не понимал его. Помню, как он заговорил с ним про Лизу, как живую, – он забыл, что она умерла, и Тихон напомнил ему, что ее уже нет, и он закричал: „Дурак“. Ему тяжело было. Я слышала из за двери, как он, кряхтя, лег на кровать и громко прокричал: „Бог мой!Отчего я не взошла тогда? Что ж бы он сделал мне? Что бы я потеряла? А может быть, тогда же он утешился бы, он сказал бы мне это слово“. И княжна Марья вслух произнесла то ласковое слово, которое он сказал ей в день смерти. «Ду ше нь ка! – повторила княжна Марья это слово и зарыдала облегчающими душу слезами. Она видела теперь перед собою его лицо. И не то лицо, которое она знала с тех пор, как себя помнила, и которое она всегда видела издалека; а то лицо – робкое и слабое, которое она в последний день, пригибаясь к его рту, чтобы слышать то, что он говорил, в первый раз рассмотрела вблизи со всеми его морщинами и подробностями.

Нижегородский Государственный Технический Университет

им. А.Е.Алексеева

Реферат по дисциплине теория вероятности

Выполнила: Ручина Н.А гр 10МЕНз

Проверил: Гладков В.В

Нижний Новгород, 2011

    Теория вероятностей……………………………………

    Предмет теории вероятностей…………………………

    Основные понятия теории вероятностей……………

    Случайные события, вероятности событий…………………………………………………

    Предельные теоремы……………………………………

    Случайные процессы……………………………………

    Историческая справка…………………………………

Используемая литература…………………………………………

Теория вероятностей

Теория вероятностей - математическая наука, позволяющая по вероятностям одних случайных событий находить вероятности других случайных событий, связанных каким-либо образом с первыми.

Утверждение о том, что какое-либо событие наступает с вероятностью, равной, например 0,75, ещё не представляет само по себе окончательной ценности, так как мы стремимся к достоверному знанию. Окончательную познавательную ценность имеют те результаты теории вероятностей, которые позволяют утверждать, что вероятность наступления какого-либо событияА весьма близка к единице или (что то же самое) вероятность не наступления событияА весьма мала. В соответствии с принципом «пренебрежения достаточно малыми вероятностями» такое событие справедливо считают практически достоверным. Имеющие научный и практический интерес выводы такого рода обычно основаны на допущении, что наступление или не наступление событияА зависит от большого числа случайных, мало связанных друг с другом факторов. Поэтому можно также сказать, что теория вероятностей есть математическая наука, выясняющая закономерности, которые возникают при взаимодействии большого числа случайных факторов

Предмет теории вероятностей

Предмет теории вероятностей. Для описания закономерной связи между некоторыми условиямиS и событиемА, наступление или не наступление которого при данных условиях может быть точно установлено, естествознание использует обычно одну из следующих двух схем:

а) при каждом осуществлении условий S наступает событиеА. Такой вид, например, имеют все законы классической механики, которые утверждают, что при заданных начальных условиях и силах, действующих на тело или систему тел, движение будет происходить однозначно определённым образом.

б) При условиях S событиеА имеет определённую вероятностьP (A / S ), равнуюр. Так, например, законы радиоактивного излучения утверждают, что для каждого радиоактивного вещества существует определённая вероятность того, что из данного количества вещества за данный промежуток времени распадётся какое-либо числоN атомов.

Назовем частотой события А в данной серии изn испытаний (то есть изn повторных осуществлений условийS ) отношениеh = m/n числаm тех испытаний, в которыхА наступило, к общему их числуn. Наличие у событияА при условияхS определённой вероятности, равнойр, проявляется в том, что почти в каждой достаточно длинной серии испытаний частота событияА приблизительно равнар.

Статистические закономерности, то есть закономерности, описываемые схемой типа (б), были впервые обнаружены на примере азартных игр, подобных игре в кости. Очень давно известны также статистические закономерности рождения, смерти (например, вероятность новорождённому быть мальчиком равна 0,515). Конец 19 в. и 1-я половина 20 в. отмечены открытием большого числа статистических закономерностей в физике, химии, биологии и т.п.

Возможность применения методов теории вероятностей к изучению статистических закономерностей, относящихся к весьма далёким друг от друга областям науки, основана на том, что вероятности событий всегда удовлетворяют некоторым простым соотношениям. Изучение свойств вероятностей событий на основе этих простых соотношений и составляет предмет теории вероятностей.

Основные понятия теории вероятностей

Основные понятия теории вероятностей. Наиболее просто определяются основные понятия теории вероятностей, как математической дисциплины, в рамках так называемой элементарной теории вероятностей. Каждое испытаниеТ, рассматриваемое в элементарной теории вероятностей, таково, что оно заканчивается одним и только одним из событийE 1 , E 2 ,..., E S (тем или иным, в зависимости от случая). Эти события называются исходами испытания. С каждым исходомE k связывается положительное числор к - вероятность этого исхода. Числаp k должны при этом в сумме давать единицу. Затем рассматриваются событияА, заключающиеся в том, что «наступает илиE i , илиE j ,..., илиE k ». ИсходыE i , E j ,..., E k называются благоприятствующимиА, и по определению полагают вероятностьР (А ) событияА , равной сумме вероятностей благоприятствующих ему исходов:

P (A ) =p i +p s ++p k . (1)

Частный случай p 1 =p 2 =...p s =1/S приводит к формуле

Р (А ) =r/s. (2)

Формула (2) выражает так называемое классическое определение вероятности, в соответствии с которым вероятность какого-либо события А равна отношению числаr исходов, благоприятствующихА, к числуs всех «равновозможных» исходов. Классическое определение вероятности лишь сводит понятие «вероятности» к понятию «равновозможности», которое остаётся без ясного определения.

Пример. При бросании двух игральных костей каждый из 36 возможных исходов может быть обозначен (i ,j ), гдеi - число очков, выпадающее на первой кости,j - на второй. Исходы предполагаются равновероятными. СобытиюА - «сумма очков равна 4», благоприятствуют три исхода (1; 3), (2; 2), (3; 1). Следовательно,Р (A ) = 3/36= 1/12.

Исходя из каких-либо данных событий, можно определить два новых события: их объединение (сумму) и совмещение (произведение).

Событие В называется объединением событийA 1 , A 2 ,..., A r ,-, если оно имеет вид: «наступает илиA 1 , илиА 2 ,..., илиA r ».

Событие С называется совмещением событий A 1 , А. 2 ,..., A r , если оно имеет вид: «наступает иA 1 , и A 2 ,..., и A r ». Объединение событий обозначают знаком, а совмещение - знаком. Таким образом, пишут:

B = A 1 A 2  …  A r , C = A 1 A 2  …  A r .

События А иВ называют несовместными, если их одновременное осуществление невозможно, то есть если не существует среди исходов испытания ни одного благоприятствующего иА иВ.

С введёнными операциями объединения и совмещения событий связаны две основные теоремы теории вероятностей - теоремы сложения и умножения вероятностей.

Теорема сложения вероятностей: Если событияA 1 , A 2 ,...,A r таковы, что каждые два из них несовместны, то вероятность их объединения равна сумме их вероятностей.

Так, в приведённом выше примере с бросанием двух костей событие В - «сумма очков не превосходит 4», есть объединение трёх несовместных событийA 2 , A 3 , A 4 , заключающихся в том, что сумма очков равна соответственно 2, 3, 4. Вероятности этих событий 1/36; 2/36; 3/36. По теореме сложения вероятностьР (В ) равна

1/36 + 2/36 + 3/36 = 6/36 = 1/6.

События A 1 , A 2 ,...,A r называются независимыми, если условная вероятность каждого из них при условии, что какие-либо из остальных наступили, равна его «безусловной» вероятности.

Теорема умножения вероятностей: Вероятность совмещения событийA 1 , A 2 ,...,A r равна вероятности событияA 1 , умноженной на вероятность событияA 2 , взятую при условии, чтоА 1 наступило,..., умноженной на вероятность событияA r при условии, чтоA 1 , A 2 ,...,A r-1 наступили. Для независимых событий теорема умножения приводит к формуле:

P (A 1 A 2 …A r ) =P (A 1 ) · P (A 2 ) · … · P (A r ), (3)

то есть вероятность совмещения независимых событий равна произведению вероятностей этих событий. Формула (3) остаётся справедливой, если в обеих её частях некоторые из событий заменить на противоположные им.

Пример. Производится 4 выстрела по цели с вероятностью попадания 0,2 при отдельном выстреле. Попадания в цель при различных выстрелах предполагаются независимыми событиями. Какова вероятность попадания в цель ровно три раза?

Каждый исход испытания может быть обозначен последовательностью из четырёх букв [напр., (у, н, н, у) означает, что при первом и четвёртом выстрелах были попадания (успех), а при втором и третьем попаданий не было (неудача)]. Всего будет 2·2·2·2 = 16 исходов. В соответствии с предположением о независимости результатов отдельных выстрелов следует для определения вероятностей этих исходов использовать формулу (3) и примечание к ней. Так, вероятность исхода (у, н. н, н) следует положить равной 0,2·0,8·0,8·0,8 = 0,1024; здесь 0,8 = 1-0,2 - вероятность промаха при отдельном выстреле. Событию «в цель попадают три раза» благоприятствуют исходы (у, у, у, н), (у, у, н, у), (у, н, у, у). (н, у, у, у), вероятность каждого одна и та же:

0,2·0,2·0,2·0,8 =...... =0,8·0,2·0,2·0,2 = 0,0064;

следовательно, искомая вероятность равна

4·0,0064 = 0,0256.

Обобщая рассуждения разобранного примера, можно вывести одну из основных формул теории вероятностей: если события A 1 , A 2 ,..., A n независимы и имеют каждое вероятностьр, то вероятность наступления ровноm из них равна

P n (m ) = C n m p m (1 - p ) n-m ; (4)

здесь C n m обозначает число сочетаний изn элементов поm. При большихn вычисления по формуле (4) становятся затруднительными.

К числу основных формул элементарной теории вероятностей относится также так называемая формула полной вероятности : если событияA 1 , A 2 ,..., A r попарно несовместны и их объединение есть достоверное событие, то для любого событияВ его вероятность равна их сумме.

Теорема умножения вероятностей оказывается особенно полезной при рассмотрении составных испытаний. Говорят, что испытание Т составлено из испытанийT 1 , T 2 ,..., T n-1 , T n , если каждый исход испытанияТ есть совмещение некоторых исходовA i , B j ,..., X k , Y l соответствующих испытанийT 1 , T 2 ,..., T n-1 , T n . Из тех или иных соображений часто бывают известны вероятности

P (A i ), P (B j /A i ), …,P (Y l /A i B j …X k ). (5)

По вероятностям (5) с помощью теоремы умножения могут быть определены вероятности Р (Е ) для всех исходовЕ составного испытания, а вместе с тем и вероятности всех событий, связанных с этим испытанием. Наиболее значительными с практической точки зрения представляются два типа составных испытаний:

а) составляющие испытания не зависимы, то есть вероятности (5) равны безусловным вероятностям P (A i ), P (B j ),..., P (Y l );

б) на вероятности исходов какого-либо испытания влияют результаты лишь непосредственно предшествующего испытания, то есть вероятности (5) равны соответственно: P (A i ), P (B j /A i ),..., P (Y i / X k ). В этом случае говорят об испытаниях, связанных в цепь Маркова. Вероятности всех событий, связанных с составным испытанием, вполне определяются здесь начальными вероятностямиР (А i ) и переходными вероятностямиP (B j / A i ),..., P (Y l / X k ).

Основные формулы по теории вероятности

Формулы теории вероятностей.

1. Основные формулы комбинаторики

а) перестановки.

\б) размещения

в) сочетания .

2. Классическое определение вероятности.

Где- число благоприятствующих событиюисходов,- число всех элементарных равновозможных исходов.

3. Вероятность суммы событий

Теорема сложения вероятностей несовместных событий:

Теорема сложения вероятностей совместных событий:

4. Вероятность произведения событий

Теорема умножения вероятностей независимых событий:

Теорема умножения вероятностей зависимых событий:

,

    Условная вероятность события при условии, что произошло событие,

    Условная вероятность события при условии, что произошло событие.

Комбинаторика - это раздел математики, в котором изучаются вопросы о том, сколько различных комбинаций, подчиненных тем или иным условиям, можно составить из заданных объектов. Основы комбинаторики очень важны для оценки вероятностей случайных событий, т.к. именно они позволяют подсчитать принципиально возможное количество различных вариантов развития событий.

Основная формула комбинаторики

Пусть имеется k групп элементов, причем i-я группа состоит из ni элементов. Выберем по одному элементу из каждой группы. Тогда общее число N способов, которыми можно произвести такой выбор, определяется соотношением N=n1*n2*n3*...*nk.

Пример 1. Поясним это правило на простом примере. Пусть имеется две группы элементов, причем первая группа состоит из n1 элементов, а вторая - из n2 элементов. Сколько различных пар элементов можно составить из этих двух групп, таким образом, чтобы в паре было по одному элементу от каждой группы? Допустим, мы взяли первый элемент из первой группы и, не меняя его, перебрали все возможные пары, меняя только элементы из второй группы. Таких пар для этого элемента можно составить n2. Затем мы берем второй элемент из первой группы и также составляем для него все возможные пары. Таких пар тоже будет n2. Так как в первой группе всего n1 элемент, всего возможных вариантов будет n1*n2.

Пример 2. Сколько трехзначных четных чисел можно составить из цифр 0, 1, 2, 3, 4, 5, 6, если цифры могут повторяться?

Решение: n1=6 (т.к. в качестве первой цифры можно взять любую цифру из 1, 2, 3, 4, 5, 6), n2=7 (т.к. в качестве второй цифры можно взять любую цифру из 0, 1, 2, 3, 4, 5, 6), n3=4 (т.к. в качестве третьей цифры можно взять любую цифру из 0, 2, 4, 6).

Итак, N=n1*n2*n3=6*7*4=168.

В том случае, когда все группы состоят из одинакового числа элементов, т.е. n1=n2=...nk=n можно считать, что каждый выбор производится из одной и той же группы, причем элемент после выбора снова возвращается в группу. Тогда число всех способов выбора равно nk.Такой способ выбора носит название выборки с возвращением.

Пример. Сколько всех четырехзначных чисел можно составить из цифр 1, 5, 6, 7, 8?

Решение. Для каждого разряда четырехзначного числа имеется пять возможностей, значит N=5*5*5*5=54=625.

Рассмотрим множество, состоящие из n элементов. Это множество будем называть генеральной совокупностью.

Определение 1. Размещением из n элементов по m называется любой упорядоченный набор из m различных элементов, выбранных из генеральной совокупности в n элементов.

Пример. Различными размещениями из трех элементов {1, 2, 3} по два будут наборы (1, 2), (2, 1), (1, 3), (3, 1), (2, 3),(3, 2). Размещения могут отличаться друг от друга как элементами, так и их порядком.

Число размещений обозначается А, м от nи вычисляется по формуле:

Замечание: n!=1*2*3*...*n (читается: "эн факториал"), кроме того полагают, что 0!=1.

Пример 5. Сколько существует двузначных чисел, в которых цифра десятков и цифра единиц различные и нечетные?

Решение: т.к. нечетных цифр пять, а именно 1, 3, 5, 7, 9, то эта задача сводится к выбору и размещению на две разные позиции двух из пяти различных цифр, т.е. указанных чисел будет:

Определение 2. Сочетанием из n элементов по m называется любой неупорядоченный набор из m различных элементов, выбранных из генеральной совокупности в n элементов.

Пример 6. Для множества {1, 2, 3}сочетаниями являются {1, 2}, {1, 3}, {2, 3}.

Число сочетаний обозначается Cnm и вычисляется по формуле:

Определение 3. Перестановкой из n элементов называется любой упорядоченный набор этих элементов.

Пример 7a. Всевозможными перестановками множества, состоящего из трех элементов {1, 2, 3} являются: (1, 2, 3), (1, 3, 2), (2, 3, 1), (2, 1, 3), (3, 2, 1), (3, 1, 2).

Число различных перестановок из n элементов обозначается Pn и вычисляется по формуле Pn=n!.

Пример 8. Сколькими способами семь книг разных авторов можно расставить на полке в один ряд?

Решение: эта задача о числе перестановок семи разных книг. Имеется P7=7!=1*2*3*4*5*6*7=5040 способов осуществить расстановку книг.

Обсуждение. Мы видим, что число возможных комбинаций можно посчитать по разным правилам (перестановки, сочетания, размещения) причем результат получится различный, т.к. принцип подсчета и сами формулы отличаются. Внимательно посмотрев на определения, можно заметить, что результат зависит от нескольких факторов одновременно.

Во-первых, от того, из какого количества элементов мы можем комбинировать их наборы (насколько велика генеральная совокупность элементов).

Во-вторых, результат зависит от того, какой величины наборы элементов нам нужны.

И последнее, важно знать, является ли для нас существенным порядок элементов в наборе. Поясним последний фактор на следующем примере.

Пример. На родительском собрании присутствует 20 человек. Сколько существует различных вариантов состава родительского комитета, если в него должны войти 5 человек?

Решение: В этом примере нас не интересует порядок фамилий в списке комитета. Если в результате в его составе окажутся одни и те же люди, то по смыслу для нас это один и тот же вариант. Поэтому мы можем воспользоваться формулой для подсчета числа сочетаний из 20 элементов по 5.

Иначе будут обстоять дела, если каждый член комитета изначально отвечает за определенное направление работы. Тогда при одном и том же списочном составе комитета, внутри него возможно 5! вариантов перестановок, которые имеют значение. Количество разных (и по составу, и по сфере ответственности) вариантов определяется в этом случае числом размещений из 20 элементов по 5.

Геометрическое определение вероятности

Пусть случайное испытание можно представить себе как бросание точки наудачу в некоторую геометрическую область G (на прямой, плоскости или пространстве). Элементарные исходы – это отдельные точки G, любое событие – это подмножество этой области, пространства элементарных исходов G. Можно считать, что все точки G «равноправны» и тогда вероятность попадания точки в некоторое подмножество пропорционально его мере (длине, площади, объему) и не зависит от его расположения и формы.

Геометрическая вероятность события А определяется отношением: , где m(G), m(A) – геометрические меры (длины, площади или объемы) всего пространства элементарных исходов и события А.

Пример. На плоскость, разграфленную параллельными полосами шириной 2d, расстояние между осевыми линиями которых равно 2D, наудачу брошен круг радиуса r (). Найти вероятность того, что круг пересечет некоторую полосу.

Решение. В качестве элементарного исхода этого испытания будем считать расстояние x от центра круга до осевой линии ближайшей к кругу полосы. Тогда все пространство элементарных исходов – это отрезок . Пересечение круга с полосой произойдетв том случае, если его центр попадет в полосу, т.е., или будет находится от края полосы на расстоянии меньшем чем радиус, т.е..

Для искомой вероятности получаем: .

Классификация событий на возможные, вероятные и случайные. Понятия простого и сложного элементарного события. Операции над событиями. Классическое определение вероятности случайного события и её свойства. Элементы комбинаторики в теории вероятностей. Геометрическая вероятность. Аксиомы теории вероятностей.

1. Классификация событий

Одним из основных понятий теории вероятностей является понятие события. Под событием понимают любой факт, который может произойти в результате опыта или испытания. Под опытом, или испытанием, понимается осуществление определённого комплекса условий.

Примеры событий:

– попадание в цель при выстреле из орудия (опыт - произведение выстрела; событие - попадание в цель);

– выпадение двух гербов при трёхкратном бросании монеты (опыт - трёхкратное бросание монеты; событие - выпадение двух гербов);

– появление ошибки измерения в заданных пределах при измерении дальности до цели (опыт - измерение дальности; событие - ошибка измерения).

Можно привести бесчисленное множество подобных примеров. События обозначаются заглавными буквами латинского алфавита и т д.

Различают события совместные и несовместные. События называются совместными, если наступление одного из них не исключает наступления другого. В противном случае события называются несовместными. Например, подбрасываются две игральные кости. Событие -выпадание трех очков на первой игральной кости, событие- выпадание трех очков на второй кости.и- совместные события. Пусть в магазин поступила партия обуви одного фасона и размера, но разного цвета. Событие- наудачу взятая коробка окажется с обувью черного цвета, событие- коробка окажется с обувью коричневого цвета,и- несовместные события.

Событие называется достоверным, если оно обязательно произойдет в условиях данного опыта.

Событие называется невозможным, если оно не может произойти в условиях данного опыта. Например, событие, заключающееся в том, что из партии стандартных деталей будет взята стандартная деталь, является достоверным, а нестандартная - невозможным.

Событие называется возможным, или случайным, если в результате опыта оно может появиться, но может и не появиться. Примером случайного события может служить выявление дефектов изделия при контроле партии готовой продукции, несоответствие размера обрабатываемого изделия заданному, отказ одного из звеньев автоматизированной системы управления.

События называются равновозможными, если по условиям испытания ни одно из этих событий не является объективно более возможным, чем другие. Например, пусть магазину поставляют электролампочки (причем в равных количествах) несколько заводов-изготовителей. События, состоящие в покупке лампочки любого из этих заводов, равновозможны.

Важным понятием является полная группа событий. Несколько событий в данном опыте образуют полную группу, если в результате опыта обязательно появится хотя бы одно из них. Например, в урне находится десять шаров, из них шесть шаров красных, четыре белых, причем пять шаров имеют номера. - появление красного шара при одном извлечении,- появление белого шара,- появление шара с номером. Событияобразуют полную группу совместных событий.

Введем понятие противоположного, или дополнительного, события. Под противоположным событием понимается событие, которое обязательно должно произойти, если не наступило некоторое событие. Противоположные события несовместны и единственно возможны. Они образуют полную группу событий. Например, если партия изготовленных изделий состоит из годных и бракованных, то при извлечении одного изделия оно может оказаться либо годным - событие, либо бракованным- событие.

2. Операции над событиями

При разработке аппарата и методики исследования случайных событий в теории вероятностей очень важным является понятие суммы и произведения событий.

Некоторые программисты после работы в области разработки обычных коммерческих приложений задумываются о том, чтобы освоить машинное обучение и стать аналитиком данных. Часто они не понимают, почему те или иные методы работают, и большинство методов машинного обучения кажутся магией. На самом деле, машинное обучение базируется на математической статистике, а та, в свою очередь, основана на теории вероятностей. Поэтому в этой статье мы уделим внимание базовым понятиям теории вероятностей: затронем определения вероятности, распределения и разберем несколько простых примеров.

Возможно, вам известно, что теория вероятностей условно делится на 2 части. Дискретная теория вероятностей изучает явления, которые можно описать распределением с конечным (или счетным) количеством возможных вариантов поведения (бросания игральных костей, монеток). Непрерывная теория вероятностей изучает явления, распределенные на каком-то плотном множестве, например на отрезке или в круге.

Можно рассмотреть предмет теории вероятностей на простом примере. Представьте себя разработчиком шутера. Неотъемлемой частью разработки игр этого жанра является механика стрельбы. Ясно, что шутер в котором всё оружие стреляет абсолютно точно, будет малоинтересен игрокам. Поэтому, обязательно нужно добавлять оружию разброс. Но простая рандомизация точек попадания оружия не позволит сделать его тонкую настройку, поэтому, корректировка игрового баланса будет сложна. В то же время, используя случайные величины и их распределения можно проанализировать то, как будет работать оружие с заданным разбросом, и поможет внести необходимые корректировки.

Пространство элементарных исходов

Допустим, из некоторого случайного эксперимента, который мы можем многократно повторять (например, бросание монеты), мы можем извлечь некоторую формализуемую информацию (выпал орел или решка). Эта информация называется элементарным исходом, при этом целесообразно рассматривать множество всех элементарных исходов, часто обозначаемое буквой Ω (Омега).

Структура этого пространства целиком зависит от природы эксперимента. Например, если рассматривать стрельбу по достаточно большой круговой мишени, - пространством элементарных исходов будет круг, для удобства размещенный с центром в нуле, а исходом - точка в этом круге.

Кроме того, рассматривают множества элементарных исходов - события (например, попадание в «десятку» - это концентрический круг маленького радиуса с мишенью). В дискретном случае всё достаточно просто: мы можем получить любое событие, включая или исключая элементарные исходы за конечное время. В непрерывном же случае всё гораздо сложнее: нам понадобится некоторое достаточно хорошее семейство множеств для рассмотрения, называемое алгеброй по аналогии с простыми вещественными числами, которые можно складывать, вычитать, делить и умножать. Множества в алгебре можно пересекать и объединять, при этом результат операции будет находиться в алгебре. Это очень важное свойство для математики, которая лежит за всеми этими понятиями. Минимальное семейство состоит всего из двух множеств - из пустого множества и пространства элементарных исходов.

Мера и вероятность

Вероятность - это способ делать выводы о поведении очень сложных объектов, не вникая в принцип их работы. Таким образом, вероятность определяется как функция от события (из того самого хорошего семейства множеств), которая возвращает число - некоторую характеристику того, насколько часто может происходить такое событие в реальности. Для определённости математики условились, что это число должно лежать между нулем и единицей. Кроме того, к этой функции предъявляются требования: вероятность невозможного события нулевая, вероятность всего множества исходов единичная, и вероятность объединения двух независимых событий (непересекающихся множеств) равна сумме вероятностей. Другое название вероятности - вероятностная мера. Чаще всего используется Лебегова мера , обобщающая понятия длина, площадь, объём на любые размерности (n -мерный объем), и таким образом она применима для широкого класса множеств.

Вместе совокупность множества элементарных исходов, семейства множеств и вероятностной меры называется вероятностным пространством . Рассмотрим, каким образом можно построить вероятностное пространство для примера со стрельбой в мишень.

Рассмотрим стрельбу в большую круглую мишень радиуса R , в которую невозможно промахнуться. Множеством элементарных событий положим круг с центром в начале координат радиуса R . Поскольку мы собираемся использовать площадь (меру Лебега для двумерных множеств) для описания вероятности события, то будем использовать семейство измеримых (для которых эта мера существует) множеств.

Примечание На самом деле, это технический момент и в простых задачах процесс определения меры и семейства множеств не играет особой роли. Но понимать, что эти два объекта существуют, необходимо, ведь во многих книгах по теории вероятности теоремы начинаются со слов: «Пусть (Ω,Σ,P) - вероятностное пространство … ».

Как уже сказано выше, вероятность всего пространства элементарных исходов должна равняться единице. Площадь (двумерная мера Лебега, которую мы обозначим λ 2 (A) , где А — событие) круга по хорошо известной со школы формуле равна π *R 2 . Тогда мы можем ввести вероятность P(A) = λ 2 (A) / (π *R 2) , и эта величина уже будет лежать между 0 и 1 для любого события А.

Если предположить, что попадание в любую точку мишени равновероятно, поиск вероятности попадания стрелком в какую-то то область мишени сводится к поиску площади этого множества (отсюда можно сделать вывод, что вероятность попадания в конкретную точку нулевая, ведь площадь точки равна нулю).

Например, мы хотим узнать, какова вероятность того, что стрелок попадёт в «десятку» (событие A — стрелок попал в нужное множество). В нашей модели, «десятка» представляется кругом с центром в нуле и радиусом r. Тогда вероятность попадания в этот круг P(A) = λ 2 /(A)π *R 2 = π * r 2 /(π R 2)= (r/R) 2 .

Это одна из самых простых разновидностей задач на «геометрическую вероятность», - большинство таких задач требуют поиска площади.

Случайные величины

Случайная величина — функция, переводящая элементарные исходы в вещественные числа. К примеру, в рассмотренной задаче мы можем ввести случайную величину ρ(ω) — расстояние от точки попадания до центра мишени. Простота нашей модели позволяет явно задать пространство элементарных исходов: Ω = {ω = (x,y) такие числа, что x 2 +y 2 ≤ R 2 } . Тогда случайная величина ρ(ω) = ρ(x,y) = x 2 +y 2 .

Средства абстракции от вероятностного пространства. Функция распределения и плотность

Хорошо, когда структура пространства хорошо известна, но на самом деле так бывает далеко не всегда. Даже если структура пространства известна, она может быть сложна. Для описания случайных величин, если их выражение неизвестно, существует понятие функции распределения, которую обозначают F ξ (x) = P(ξ < x) (нижний индекс ξ здесь означает случайную величину). Т.е. это вероятность множества всех таких элементарных исходов, для которых значение случайной величины ξ на этом событии меньше, чем заданный параметр x .

Функция распределения обладает несколькими свойствами:

  1. Во-первых, она находится между 0 и 1 .
  2. Во-вторых, она не убывает, когда ее аргумент x растёт.
  3. В третьих, когда число -x очень велико, функция распределения близка к 0 , а когда само х большое, функция распределения близка к 1 .

Вероятно, смысл этой конструкции при первом чтении не слишком понятен. Одно из полезных свойств — функция распределения позволяет искать вероятность того, что величина принимает значение из интервала. Итак, P (случайная величина ξ принимает значения из интервала ) = F ξ (b)-F ξ (a) . Исходя из этого равенства, можем исследовать, как изменяется эта величина, если границы a и b интервала близки.

Пусть d = b-a , тогда b = a+d . А следовательно, F ξ (b)-F ξ (a) = F ξ (a+d) - F ξ (a) . При малых значениях d , указанная выше разность так же мала (если распределение непрерывное). Имеет смысл рассматривать отношение p ξ (a,d)= (F ξ (a+d) - F ξ (a))/d . Если при достаточно малых значениях d это отношение мало отличается от некоторой константы p ξ (a) , не зависящей от d, то в этой точке случайная величина имеет плотность, равную p ξ (a) .

Примечание Читатели, которые ранее сталкивались понятием производной, могут заметить что p ξ (a) — производная функции F ξ (x) в точке a . Во всяком случае, можно изучить понятие производной в посвященной этой теме статье на сайте Mathprofi.

Теперь смысл функции распределения можно определить так: её производная (плотность p ξ , которую мы определили выше) в точке а описывает, насколько часто случайная величина будет попадать в небольшой интервал с центром в точке а (окрестность точки а) по сравнению с окрестностями других точек. Другими словами, чем быстрее растёт функция распределения, тем более вероятно появление такого значения при случайном эксперименте.

Вернемся к примеру. Мы можем вычислить функцию распределения для случайной величины, ρ(ω) = ρ(x,y) = x 2 +y 2 , которая обозначает расстояние от центра до точки случайного попадания в мишень. По определению F ρ (t) = P(ρ(x,y) < t) . т.е. множество {ρ(x,y) < t)} — состоит из таких точек (x,y) , расстояние от которых до нуля меньше, чем t . Мы уже считали вероятность такого события, когда вычисляли вероятность попадания в «десятку» - она равна t 2 /R 2 . Таким образом, Fρ(t) = P(ρ(x,y) < t) = t 2 /R 2 , для 0

Мы можем найти плотность p ρ этой случайной величины. Сразу заметим, что вне интервала она нулевая, т.к. функция распределения на этом промежутке неизменна. На концах этого интервала плотность не определена. Внутри интервала её можно найти, используя таблицу производных (например из на сайте Mathprofi) и элементарные правила дифференцирования. Производная от t 2 /R 2 равна 2t/R 2 . Значит, плотность мы нашли на всей оси вещественных чисел.

Ещё одно полезное свойство плотности — вероятность того, что функция принимает значение из промежутка, вычисляется при помощи интеграла от плотности по этому промежутку (ознакомиться с тем, что это такое, можно в статьях о собственном , несобственном , неопределенном интегралах на сайте Mathprofi).

При первом чтении, интеграл по промежутку от функции f(x) можно представлять себе как площадь криволинейной трапеции. Ее сторонами являются фрагмент оси Ох, промежуток (горизонтальной оси координат), вертикальные отрезки, соединяющие точки (a,f(a)), (b,f(b)) на кривой с точками (a,0), (b,0) на оси Ох. Последней стороной является фрагмент графика функции f от (a,f(a)) до (b,f(b)) . Можно говорить об интеграле по промежутку (-∞; b] , когда для достаточно больших отрицательных значений, a значение интеграла по промежутку будет меняться пренебрежимо мало по сравнению с изменением числа a. Аналогичным образом определяется и интеграл по промежуткам }