05.04.2019

Уклон кровли онлайн. Определение номинального угла наклона кровли


Двускатные крыши можно, пожалуй, отнести к наиболее популярным среди частных застройщиков. Их стропильная система обычно не отличается высокой сложностью как в расчётах, так и в практической реализации. Но сама по себе двускатная крыша становится весьма надежной, практичной, привлекательной внешне, а кроме того – при должном планировании позволяет полезно использовать чердачное помещение, вплоть до оборудования там полноценной жилой комнаты.

Одним из ключевых параметров при расчетах самих стропильных систем и кровельных покрытий, в том числе - нагрузок, которые будут на них выпадать в ходе эксплуатации, является угол уклона скатов. Его расчет , в принципе, несложен, но заученные еще в школе формулы имеют свойство постепенно подзабываться. Чтобы упростить себе задачу – используйте калькулятор расчета угла наклона двускатной крыши, предлагаемый в этой публикации. Несколько необходимых пояснений будет приведено ниже.

Калькулятор расчета угла наклона двускатной крыши

Укажите запрашиваемые значения и нажмите
«ПОКАЗАТЬ ЗАВИСИМОСТЬ ВЫСОТЫ КОНЬКА ОТ УГЛА НАКЛОНА СКАТА»

РАССТОЯНИЕ ОТ ЛИНИИ МАУЭРЛАТА ДО ТОЧКИ ПРОЕКЦИИ КОНЬКА (в метрах)

УГОЛ УКЛОНА СКАТА КРЫШИ (в градусах)

Пояснения по пользованию калькулятором

Если рассуждать более корректно, то это, скорее, калькулятор, наглядно демонстрирующий зависимость высоты конька двускатной стропильной системы от угла крутизны ее скатов. Но такой подход при планировании, возможно, даже и лучше, так как позволяет, варьируя значения угла крутизны, найти оптимальное соотношение, при одном неизменном параметре – размерах самого здания.

В основу расчёта положена тригонометрическая формула зависимости длин сторон и величин углов прямоугольного треугольника. В данном случае «константой» является горизонтальная проекция ската d , то есть расстояние от точки пересечения стропильной ноги с мауэрлатом до точки проекции конька на плоскость мауэрлата.

Высота Н – расстояние по вертикали от плоскости мауэрлата до линии конька. И противолежащий этой высоте угол а – это как раз и есть нужная нам крутизна ската крыши.

С помощью калькулятора можно решить, так сказать, прямую и обратную задачи:

  1. Требуется, чтобы скат имел строго оговоренный угол крутизны а . Расчет покажет, какой при этом получится высота конька Н .
  2. Необходимо смонтировать крышу с намеченной высотой конька Н . Требуется определить, какой при этом получится уклон ската а . В этом случае ничего не стоит простым перебором значений в поле ввода угла крутизны быстро найти, при каком а будет получен требуемый результат Н (или наиболее близкий к нему). Это займет буквально несколько секунд.

Еще один нюанс. Двускатная крыша не всегда проектируется симметричной, то есть может быть с разными значениями угла крутизны и длины противоположных скатов. Ничего сложного – просто придется провести поочередно расчет для каждой стороны в отдельности.

Естественно, при последовательных расчетах в данном случае исходят из того, что высота конька для обеих сторон должна быть одинаковой. В остальном – все так же, как было пояснено выше.

Как самостоятельно рассчитать и смонтировать двускатную стропильную систему?

Показанные выше расчет является «стартовым» - вслед за ним проводится еще ряд других, определяющих основные параметры всей стропильной системы. Со всеми подробностями от проектирования и до пошаговой инструкции по проведению монтажных работ – в специальной публикации нашего портала.

Проекты возводимых загородных особняков могут учитывать множество требований, пожеланий и даже причуд или «капризов» их владельцев владельца. Но всегда их «роднит» общая особенность — без надежной крыши никогда не обходится ни одно их зданий. И в этом вопросе на первый план должны выходить не столько архитектурные изыски заказчика, сколько специфические требования к этому элементу строения. Это надежность и устойчивость всей стропильной системы и кровельного покрытия, полноценное выполнение крышей своего прямого предназначения - защиты от проникновения влаги (а в ряде случаев, кроме того, еще и термо- и звукоизоляции), при необходимости - функциональность расположенных непосредственно под кровлей помещений.

Проектирование конструкции крыши - дело чрезвычайно ответственное и достаточно непростое, особенно при сложных ее конфигурациях. Разумнее всего будет доверить это дело профессионалам, которое владеют методикой проведения необходимых расчетов и соответствующим программным обеспечение для этого. Однако, владельцу дома тоже могут быть интересны некоторые теоретические моменты. Например, немаловажно знать, как рассчитать угол наклона крыши самостоятельно, хотя бы приблизительно — для начала. Это даст возможность сразу прикинуть возможность реализации своих «авторских прикидок» — по соответствию задуманного реальным условиям региона, по «архитектуре» самой крыши, по планируемому кровельному материалу, по использованию чердачного помещения. В определенной степени рассчитанный угол ската кровли поможет провести предварительный подсчет параметров и количества пиломатериалов для стропильной системы, общей площади кровельного покрытия.

В каких величинах удобнее измерять угол ската крыши?

Казалось бы - совершенно излишний вопрос, так как все со школьной скамьи знают, что угол измеряется в градусах. Но ясность здесь все же нужна, потому что и в технической литературе, и в справочных таблицах, и в привычном обиходе некоторых опытных мастеров нередко встречаются и иные единицы измерения - проценты или же относительные соотношения сторон.

И еще одно необходимое уточнение — что принимается за угол наклона крыши?

Угол наклона - это угол, образованный пересечением двух плоскостей: горизонтальной и плоскостью ската кровли. На рисунке он показан буквой греческого алфавита α.

Интересующие нас острые углы (тупоугольных скатов не может быть просто по определению), лежит в диапазоне от 0 до 90°. Скаты круче 50 ÷ 60 ° в «чистом» виде встречаются чрезвычайно редко и то, как правило, для декоративного оформления крыш - при строительстве остроконечных башенок в готическом стиле. Однако есть и исключение - такими крутыми могут быть скаты нижнего ряда стропил крыши мансардного типа.

И все же чаще всего приходится иметь дело со скатами, лежащим в диапазоне от 0 до 45°

С градусами понятно - все, наверное, представляют транспортир с его делениями. А ка быть с другими единицами измерения?

Тоже ничего сложного.

Относительное соотношение сторон - это максимально упрощенная дробь, показывающая отношение высоты подъёма ската (на рисунке выше обозначена латинской Н) к проекции ската крыши на горизонтальную плоскость (на схеме - L).

L - это может быть, в зависимости от конструкции крыши, половина пролета (при симметричной двускатной крыше), пролет полностью (если крыша односкатная), либо, при сложных конфигурациях кровли, действительно линейный участок, определяемый проведенной к горизонтальной плоскости проекцией. Например, на схеме мансардной крыши такой участок хорошо показан - по горизонтальной балке от самого угла до вертикальной стойки, проходящей от верхней точки нижнего стропила.

Угол уклона так и записывается, дробью, например «1: 3».

Однако, на практике нередко случается так, что использовать величину угла уклона в таком представлении будет чрезвычайно неудобен, если, скажем, числа в дроби получаются некруглые и несокращаемые. Например, мало что скажет неопытному строителю соотношение 3: 11. На этот случай есть возможность воспользоваться еще одной величиной измерения уклона крыши - процентами.

Находится эта величина чрезвычайно просто - необходимо просто найти результат деления уже упомянутой дроби, а затем умножить его на 100. Например, в приведенном выше примере 3: 11

3: 11 = 0,2727 × 100 = 27,27 %

Итак, получена величина уклона ската кровли, выраженная в процентах.

А что делать, если требуется перейти от градусов к процентам или наоборот?

Можно запомнить такое соотношение. 100 % — это угол 45 градусов, когда катеты прямоугольного треугольника равны между собой, то есть в нашем случае высота ската равна длине его горизонтальной проекции.

В таком случае, 45° / 100 = 0,45° = 27´. Один процент уклона равен 27 угловым минутам.

Если подойти с другой стороны, то 100 / 45° = 2,22 %. То есть получаем, что один градус - это 2, 22% уклона.

Для простоты перевода величин из одних в другие можно воспользоваться таблицей:

Для наглядности будет полезным привести графическую схему, которая очень доступно показывает взаимосвязь всех упомянутых линейных параметров с углом ската и величинами его измерения.


К этому рисунку еще предстоит вернуться, когда будут рассматриваться виды кровельных покрытий.

Зависимость типа кровельного покрытия от крутизны ската

Планируя постройку собственного дома, хозяин участка наверняка уже проводит «прикидку» и своей голове, и с членами семьи - как будет выглядеть их будущее жилье. Кровля в этом вопросе, безусловно, занимает одно из первостепенных значений. И вот здесь необходимо учитывать то, что далеко не всякий кровельный материал может использоваться на различных по крутизне скатах крыш. Чтобы не возникало недоразумений позднее, необходим заранее предусматривать эту взаимосвязь.


Крыши по углу наклона ската можно условно разделит на плоские (уклон до 5°), с малым уклоном (от 6 до 30°) и крутоуклонные, соответственно, с углом ската более 30°.

У каждого из типов крыш есть свои достоинства и недостатки. Например, плоские крыши имеют минимальную площадь, но потребуют особых мер гидроизоляции. На крутых крышах не задерживаются снежные массы, однако они больше подвержены ветровой нагрузке из-за своей «парусности». Так и кровельный материал - в силу собственных технологических или эксплуатационных особенностей имеет определенные ограничения на применения с разными уклонами скатов.

Обратимся к уже рассматриваемому ранее рисунку (схема A). Черными кружками с дугообразными стрелками и синими цифрами обозначены области применения различных кровельных покрытий (острие стрелки указывает на минимально допустимое значение крутизны ската):

1 - это дранка, щепа, натуральный гонт. В этой же области лежит и применение до сих пор используемых в южных краях камышовых кровель.

2 - натуральное штучное черепичное покрытие, битумно-полимерные плитки, сланцевые плитки.

3 - рулонные материалы на битумной основе, не менее четырёх слоев, с внешней гравийной посыпкой, утопленной в слой расплавленной мастики.

4 - аналогично пункту 3, но для надёжности кровли достаточно трех слоев рулонного материала.

5 - аналогичные вышеописанным рулонные материалы (не менее трех слоев), но без наружной защитной гравийной посыпки.

6 - рулонные кровельные материалы, наклеиваемые на горячую мастику не менее, чем в два слоя. Металлочерепица, профнастил.

7 - волнистые асбестоцементные листы (шифер) унифицированного профиля.

8 - черепичное глиняное покрытие.

9 - асбестоцементные листы усиленного профиля.

10 - кровельная листовая сталь с развальцовкой соединений.

11 - шиферное покрытие обычного профиля.

Таким образом, если есть желание покрыть крышу кровельным материалом определенного типа, угол уклона ската должен планироваться в указанных рамках.

Зависимость высоты конька от угла наклона крыши

Для тех читателей, которые хорошо помнят курс тригонометрии средней школы, этот раздел может показаться неинтересным. Они могут сразу его пропустить и перейти дальше. А вот подзабывшим это нужно освежить знания о взаимозависимости углов и сторон в прямоугольном треугольнике.

Для чего это надо? В рассматриваемом случае возведения крыши всегда в расчетах отталкиваются от прямоугольного треугольника. Два его катета - это длина проекции ската на горизонтальную плоскость (длина пролета, половины пролета и т.п. - в зависимости от типа крыши) и высота ската в высшей точке (на коньке или при переходе на верхние стропила - при расчете нижних стропил мансардной крыши). Понятно, что постоянная величина здесь одна - это длина пролета. А вот высоту можно изменять, варьируя угол наклона крыши.

В таблице приведены две основные зависимости, выраженные через тангенс и синус угла наклона ската. Существуют и иные зависимости (через косинус или котангенс) но в данном случае нам достаточно этих двух тригонометрических функций.


Зная эти тригонометрические тождества, можно решить практически все задачи по предварительному проектированию стропильной конструкции.


Так, если необходимо «плясать» от четко установленной высоты подъёма конька, то отношением tg α = H / L несложно будет определить угол.

По полученному делением числу в таблице тангенсов находят угол в градусах. Тригонометрические функции часто бывают заложены в инженерные калькуляторы, они есть в обязательном порядке в таблицах Exel (для тех, кто умеет работать с этим удобным приложением. Правда, там расчет ведется не в градусах, а в радианах). Но чтобы нашему читателю не приходилось отвлекаться на поиски нужных таблиц, приведем значение тангенсов в диапазоне от 1 до 80°.

В случае, наоборот, когда за основу берется угол наклона кровли, высота расположения конька определяется по обратной формуле:

Теперь, имея значения двух катетов и угла наклона кровли, очень просто вычислить и требуемую длину стропила от конька до карнизного свеса. Можно применить теорему Пифагора

S = √ (L² + H²)

Или же, что, наверное, проще, так как уже известна величина угла, применить тригонометрическую зависимость:

Значение синусов углов — в таблице ниже.

Умелое использование тригонометрических формул позволяет, при нормальном пространственном воображении и при умении выполнять несложные чертежи, провести расчеты и более сложным по конструкции крыш.


Например, даже кажущуюся такой «навороченной» вальмовую или мансардную крышу можно разбить на совокупности треугольников, а затем последовательно просчитать все необходимые размеры.


Зависимость размеров помещения мансарды от угла наклона скатов крыши

Если хозяевами будущего дома планируется использовать чердак в качестве функционального помещения, иначе говоря - сделать мансарду, то определение угла ската крыши приобретает вполне прикладное значение.


Чтобы стало несколько понятнее, лучше выполнить подобную схему в определенном масштабе. Вот, например, как будет выглядеть мансардное помещение в доме с шириной фронтонной части 10 метров. Следует учитывать, что высота потолка никак не может быть ниже 2 метров. (Откровенно говоря, и двух метров маловато для жилого помещения- потолок будет неизбежно «давить» на человека. Обычно исходят из высоты хотя-бы 2.5 метра).


Можно привести уже подсчитанные средние значения получаемой в мансарде комнаты, в зависимости от угла наклона обычной двускатной крыши. кроме того, в таблице приведены величины длины стропил и площади кровельного материала с учетом 0,5 метров карнизного свеса кровли.


Итак, чем круче наклон скатов, тем просторнее помещение. Однако, это сразу отзывается резким увеличением высоты стропильной конструкции, возрастанием размеров, а стало быть - и массы деталей для ее монтажа. Гораздо больше потребуется и кровельного материала - площадь покрытия также быстро растет. Плюс к этому, нельзя забывать и о возрастании эффекта «парусности» — большей подверженности ветровой нагрузке. Видам внешних нагрузок будет посвящена последняя глава настоящей публикации.


Чтобы в определенной степени нивелировать подобные негативные последствия, проектировщики и строители часто применяют особую конструкцию мансардной крыши - о ней уже упоминалось в настоящей статье. Она сложнее в расчетах и изготовлении, но дает существенный выигрыш в получаемой полезной площади мансардного помещения с уменьшением общей высоты здания.

Зависимость величины внешних нагрузок от угла наклона крыши

Еще одно важнейшее прикладное применение рассчитанного значения угла наклона кровли - это определение степени его влияния на уровень внешних нагрузок, выпадающих на конструкцию крыши.

Здесь прослеживается интересная взаимосвязь. Можно заранее рассчитать все параметры - углы и линейные размеры, но всегда в итоге приходят к деталировке. То есть необходимо определить, из какого материала будут изготавливаться детали и узлы стропильной системы, какова должна быть их площадь сечения, шаг расположения, максимальная длина между соседними точками опоры, способы крепления элементов между собой и к несущим стенам здания и многое другое.

Вот здесь на первый план выходят нагрузки, которые испытывает конструкция крыши. Помимо собственного веса, огромное значение имеют внешние воздействия. Если не брать в расчет несвойственные для наших краев сейсмические нагрузки, то главным образом надо сосредоточится на снеговой и ветровой. Величина обеих - напрямую связана с углом расположения кровли к горизонту.

Итак, трудно преуменьшить значение правильного расчета угла наклона крыши, влияние этого параметра на целый ряд важнейших характеристик стропильной системы, да и всего здания в целом. Хотя проведение настоящих архитектурных расчетов, конечно, является в большей мере прерогативой специалистов, умение ориентироваться в основных понятиях и проводить несложные базовые вычисления - будет очень полезным для каждого грамотного владельца дома.

И в завершение статьи - видео-урок по расчету стропильной системы обычной двускатной крыши:

В системе основных конструктивных элементов (фундамент, стены, перекрытия, крыша) любого дома или здания роль архитектурного завершения принадлежит крыше, которая не только определяет внешний вид дома, но и в главной своей части выполняет функции защиты от атмосферного воздействия (снег, дождь, солнечное излучение). И оттого, как эти функции выполняются, в немалой степени зависят безопасность, комфорт и самочувствие жильцов.

Конструктивно любая крыша делится на две части: несущая (стропила, фермы, панели) и ограждающая кровля (оболочка).

Крыша и ее части

Крыши делятся на односкатные и многоскатные. В свою очередь, у многоскатных крыш есть свои подвиды (в зависимости от количества и расположения скатов): вальмовая, шатровая, мансардная, щипцовая и другие.

Конструктивно любая крыша делится на две части: несущая (стропила, фермы, панели) и ограждающая кровля (оболочка). Для выполнения своих защитных функций крыши строятся под некоторым углом (уклон ската) к горизонту. Угол может измеряться в градусах или в процентах. Прилагаем таблицу перевода одних единиц измерения в другие (см. таблицу). Если уклон не превышает 3-5 градусов (в процентах 5-9), то крыша называется плоской. Для больших углов получаем скатные крыши (скат - наклонная плоскость). По форме, в зависимости от количества скатов, крыши делятся на односкатные и многоскатные. В свою очередь, у многоскатных крыш есть свои подвиды (в зависимости от количества и расположения скатов): вальмовая, шатровая, мансардная, щипцовая и другие.

Что же влияет на этот параметр крыши?

  1. Сила ветра - чем больше уклон, тем большую величину ветровых нагрузок выдерживает крыша.
  2. Атмосферные осадки - для регионов с большим количеством осадков в виде снега, дождей рекомендуются крутые крыши, препятствующие скоплению снега, листьев, грязи.
  3. Кровельное покрытие - для каждого материала покрытия рекомендуется свой оптимальный наклон.
  4. Архитектурные предпочтения - по местным традициям в разных регионах предпочтение отдается той или иной конструкции.

Уклон кровли: факторы влияния

Остановимся более подробно на каждом из факторов.

Ветровая нагрузка. Параметр, прямо пропорциональный углу ската: чем больше наклон, тем большее сопротивление ветру оказывает крыша, но и тем выше вероятность того, что покрытие может быть разрушено. Малый угол ската - меньше сопротивление, но в этом случае ветер проникает под стыки и может сорвать листы кровли. Специалисты рекомендуют для районов с частыми сильными порывами ветра угол ската - 15-20 градусов (в процентах 27-36), для местности с несильными ветрами - 35-40 (в процентах 70-84).

Дождь и снег. Чем больше уклон ската, тем быстрее и лучше сходит снег и уходит вода. Практика показывает, что для районов с большим количеством осадков самый оптимальный вариант - 45 градусов, а для небольших осадков достаточным будет угол в 30 градусов. При меньшей величине уклона кровли вода может загоняться под стыки и нарушать герметичность кровли даже при небольшом ветре.

Материал для кровли. Самый важный фактор, при правильном учете которого кровля будет служить долго и надежно. Укажем рекомендуемые углы наклона.

  1. Штучные материалы: черепица и шифер. Для керамической и битумной черепицы наименьший уклон - 11 градусов. Для шифера (асбоцементные листы) - 9 градусов. Такие скаты предотвращают накапливание и просачивание воды на стыках.
  2. Рулонные материалы - рубероид, рубемаст, мембранное покрытие и другие. Кровля состоит из нескольких слоев: небольшой уклон (2-5 градусов) - 3,4 слоя, больший угол (до 18) - 2 слоя. Материалы достаточно дешевы, легко укладываются, ремонтируются, но недолговечны и требуют для скатной кровли сплошной обрешетки (конструкция из досок, на которую крепится кровля).
  3. Профнастил - рекомендуемый угол наклона составляет 12 градусов. При меньших углах необходимо проклеивать стыки кровли герметиками.
  4. Ондулин - облицовочный и кровельный материал. Оптимальный угол ската - 5-6 градусов.

Отметим, что перечисленные материалы обладают своими относительными преимуществами и недостатками для разных климатических и температурных условий, разных строений, разных конструкций крыши и, наконец, разных предпочтений и возможностей хозяина постройки. Но, в любом случае, чтобы рассчитать количество материала, обязательно надо учитывать указанные минимальные или оптимальные углы ската кровли.

Самостоятельный математический расчет элементов крыши

Таблица преобразования градусов в проценты.

Рассмотрим примеры практического применения таблицы преобразования градусов в проценты. Чтобы найти высоту конька (точки соединения скатов) математическим способом, применим следующий алгоритм.

Пусть ширина строящегося дома составляет 8 метров. После выбора материала кровли, учета климатических условий, бюджетных возможностей определяем, что угол уклона должен составлять 24 градуса. Берем половину ширины дома (4 метра), умножаем на 44,5 (из таблицы для угла в 24 градуса) и делим на 100. Получаем результат: 4*44,5/100 = 1,78 м. Примерно 1,8 м - это и есть высота конька, на которую должны быть подняты стропила.

Таким образом, варьируя материал (ассортимент широко представлен на современном рынке) согласно климатическим условиям и бюджету, вы сами сможете выбрать нужный уклон кровли и рассчитать высоту крыши, используя в качестве инструментов только рулетку, угольник и калькулятор.

Бывают случаи, когда необходимо уже готового строения. Найти его несложно по следующей формуле: i = H / L, где i - уклон кровли, H - высота конька, L - половина пролета (ширины здания). Если нужно произвести расчет в процентах, то применяем формулу: i = H / L * 100%.

Уклон = 1,78 / 4 * 100% = 44,5%

Из таблицы преобразования “градусы в проценты” для 44,5% находим величину 24 - градусная мера.

Вот так, доступно и просто вы можете самостоятельно посчитать параметры кровли: ее уклона, формы, материала.

Крыша — венец каждого здания, поскольку она влияет не только на внешность фасада, но и придает ему особенный и завершенный вид. Поэтому, определяясь с правильным сочетанием размеров сооружения, каждый человек сталкивается с необходимостью произвести расчет ската крыши.

Конечно, лучше всего поручить решение этого вопроса специалистам, однако если вы желаете выполнить все это самостоятельно, вам следует ознакомиться с несколькими подходами, каждый из которых базируется на определенном приоритете.

Факторы, которые определяют угол ската крыши:

  • климатические условия данного района;
  • кровельный стройматериал;
  • скорость ветра;
  • проект крыши;
  • дизайн фасада.

Виды кровли и расчетный угол наклона:

1. Односкатная

Является наиболее распространенной формой для строительства подсобных сооружений. Главным ее преимуществом считается экономичность. Рекомендуемый угол ската данного типа крыши варьируется от 9° до 25°.

2. Двухскатная

Такая крыша образуется путем соединения по одной линии 2-х площадей, которые создают скаты в разные стороны. Оптимальный угол ската двухскатной крыши варьируется от 5°-60° и зависит от типа кровельного стройматериала и снеговой нагрузки. Если планируется большая снеговая нагрузка, то скат крыши и его угол наклона увеличиваю от 45°-60°.

3. Вальмовая

Сегодня данный вид крыши — самый востребованный способ строительства. Уклон в этом случае варьируется от минимума к максимуму - все зависит вашего воображения.

4. Мансардная

Представляет собой один из вариантов вальмовой крыши, которая несколько усложнена. Она задействует чердачное пространство, поэтому подразумевает создание паро- и теплоизоляции. При этом имеет увеличенный угол наклона и ломаную систему ската.

Таким образом, существует огромное множество форм и видов крыш, так что, начиная строительство, постарайтесь предусмотреть все факторы, влияющие на нее и оправданные в данном регионе.

Как рассчитать скат крыши

Чаще всего угол наклона крыши варьируется в пределах от 11° до 45°.

К примеру, при повышении угла, можно существенно уменьшить давление снежного покрова на крышу, однако при слишком большом угле, может повыситься нагрузка от бокового ветра, поэтому придется покупать дорогостоящие прочные кровельные стройматериалы, обрешетки, стропила и т.п.

Даже минимальный угол ската крыши требует определенного количества материалов, а при большом наклоне, придется позаботиться о расходовании огромной суммы финансовых средств.

Расчет ската крыши

Для того чтобы определить данный показатель нам понадобится уточнить 2 параметра:

  • параметр нагрузки снега в данном регионе и местности;
  • общую массу конструкции.

Первоначально следует определить вес 1 м.кв. покрытия кровли, затем полученные данные сложить для всех слоев кровли и далее произвести умножение этого показателя на 1,1.

Какой скат крыши должен быть?

Угол кровли в зависимости от климатических условий

В тех регионах, где зимой идет обильный снегопад, нагрузка на кровлю увеличивается, поэтому угол ската выбирают от 45°-60°. Такой угол обеспечивает сход больших снежных масс, тем самым снижая нагрузку на кровельные элементы.

В том случае, если проект жилого дома создается для местности с сильными ветрами, то сооружению следует обеспечить минимальную парусность, то есть ветровую нагрузку на конструкцию кровельных элементов. В данных проектах расчет угла наклона ската крыши выбирают от 9°-20°.

К сожалению, на практике достаточно редко встречаются одни лишь погодные условия, чаще всего специалистам приходится учитывать и другие факторы, поэтому значение угла выбирается среднее от 20°-45°. Именно по этой причине большинство кровельных стройматериалов предназначено для использования с данным углом крыши.

Угол наклона кровли в зависимости от используемого стройматериала

Для каждого вида кровельного стройматериала существует собственный минимальный угол ската крыши:

  • для металлочерепицы минимальный угол наклона 14°;
  • для ондулина — 6°;
  • для профнастила — 12°;
  • для наборных элементов (черепица, шифер и т.п.) — 20°;
  • для рулонного типа покрытий угол зависит от численности слоев — чем их больше, тем меньше минимальный угол. К примеру, при трехслойном покрытии, угол варьируется от 2° до 4°, при двухслойном — от 10°-15°.

После как рассчитан угол ската крыши, следует произвести подсчет несущей способности каркасных элементов. Они вместе с крышей должны выдержать различного типа нагрузку, образующуюся в процессе эксплуатации. Что касается шага обрешетки, то она зависит от типа используемого стройматериала и от наклона кровли.

Угол уклона крыши односкатного типа в зависимости от используемого кровельного стройматериала:

  • шифер — 20°-35°;
  • фальцевая кровля — 18°-30°;
  • рубероид — 5°;
  • профнастил — 8°;
  • металлочерепица — 30°.

Если наклон достаточно легких кровельных стройматериалов, таких как оцинкованный металл или профнастил, сделать меньше, то под тяжестью снежного покрова кровля может прогнуться. Поэтому, в том регионе, где снега довольно много и он долго лежит на крышах, лучше не рисковать.

Также важно не снижать угол ската для крыши из металлочерепицы и шифера, потому что в этом случае в стыковочные узлы может просочиться вода.

Проекты возводимых загородных особняков могут учитывать множество требований, пожеланий и даже причуд или «капризов» их владельцев владельца. Но всегда их «роднит» общая особенность — без надежной крыши никогда не обходится ни одно их зданий. И в этом вопросе на первый план должны выходить не столько архитектурные изыски заказчика, сколько специфические требования к этому элементу строения. Это надежность и устойчивость всей стропильной системы и кровельного покрытия, полноценное выполнение крышей своего прямого предназначения – защиты от проникновения влаги (а в ряде случаев, кроме того, еще и термо- и звукоизоляции), при необходимости – функциональность расположенных непосредственно под кровлей помещений.

Проектирование конструкции крыши – дело чрезвычайно ответственное и достаточно непростое, особенно при сложных ее конфигурациях. Разумнее всего будет доверить это дело профессионалам, которое владеют методикой проведения необходимых расчетов и соответствующим программным обеспечение для этого. Однако, владельцу дома тоже могут быть интересны некоторые теоретические моменты. Например, немаловажно знать, как рассчитать угол наклона крыши самостоятельно, хотя бы приблизительно — для начала.

Это даст возможность сразу прикинуть возможность реализации своих «авторских прикидок» — по соответствию задуманного реальным условиям региона, по «архитектуре» самой крыши, по планируемому кровельному материалу, по использованию чердачного помещения. В определенной степени рассчитанный угол ската кровли поможет провести предварительный подсчет параметров и количества пиломатериалов для стропильной системы, общей площади кровельного покрытия.

Казалось бы – совершенно излишний вопрос, так как все со школьной скамьи знают, что угол измеряется в градусах. Но ясность здесь все же нужна, потому что и в технической литературе, и в справочных таблицах, и в привычном обиходе некоторых опытных мастеров нередко встречаются и иные единицы измерения – проценты или же относительные соотношения сторон.

И еще одно необходимое уточнение — что принимается за угол наклона крыши?

Угол наклона – это угол, образованный пересечением двух плоскостей: горизонтальной и плоскостью ската кровли. На рисунке он показан буквой греческого алфавита α.

Интересующие нас острые углы (тупоугольных скатов не может быть просто по определению), лежит в диапазоне от 0 до 90°. Скаты круче 50 ÷ 60 ° в «чистом» виде встречаются чрезвычайно редко и то, как правило, для декоративного оформления крыш – при строительстве остроконечных башенок в готическом стиле. Однако есть и исключение – такими крутыми могут быть скаты нижнего ряда стропил крыши мансардного типа.

И все же чаще всего приходится иметь дело со скатами, лежащим в диапазоне от 0 до 45°

С градусами понятно – все, наверное, представляют транспортир с его делениями. А ка быть с другими единицами измерения?

Тоже ничего сложного.

Относительное соотношение сторон – это максимально упрощенная дробь, показывающая отношение высоты подъёма ската (на рисунке выше обозначена латинской Н ) к проекции ската крыши на горизонтальную плоскость (на схеме – L ).

L – это может быть, в зависимости от конструкции крыши, половина пролета (при симметричной двускатной крыше), пролет полностью (если крыша односкатная), либо, при сложных конфигурациях кровли, действительно линейный участок, определяемый проведенной к горизонтальной плоскости проекцией. Например, на схеме мансардной крыши такой участок хорошо показан – по горизонтальной балке от самого угла до вертикальной стойки, проходящей от верхней точки нижнего стропила.

Угол уклона так и записывается, дробью, например «1: 3 ».

Однако, на практике нередко случается так, что использовать величину угла уклона в таком представлении будет чрезвычайно неудобен, если, скажем, числа в дроби получаются некруглые и несокращаемые. Например, мало что скажет неопытному строителю соотношение 3: 11 . На этот случай есть возможность воспользоваться еще одной величиной измерения уклона крыши – процентами.

Находится эта величина чрезвычайно просто – необходимо просто найти результат деления уже упомянутой дроби, а затем умножить его на 100. Например, в приведенном выше примере 3: 11

3: 11 = 0,2727 × 100 = 27,27 %

Итак, получена величина уклона ската кровли, выраженная в процентах.

А что делать, если требуется перейти от градусов к процентам или наоборот?

Можно запомнить такое соотношение. 100 % — это угол 45 градусов, когда катеты прямоугольного треугольника равны между собой, то есть в нашем случае высота ската равна длине его горизонтальной проекции.

В таком случае, 45° / 100 = 0,45° = 27´ . Один процент уклона равен 27 угловым минутам.

Если подойти с другой стороны, то 100 / 45° = 2,22 %. То есть получаем, что один градус – это 2, 22% уклона.

Для простоты перевода величин из одних в другие можно воспользоваться таблицей:

Значение в градусах Значение в % Значение в градусах Значение в % Значение в градусах Значение в %
2,22% 16° 35,55% 31° 68,88%
4,44% 17° 37,77% 32° 71,11%
6,66% 18° 40,00% 33° 73,33%
8,88% 19° 42,22% 34° 75,55%
11,11% 20° 44,44% 35° 77,77%
13,33% 21° 46,66% 36° 80,00%
15,55% 22° 48,88% 37° 82,22%
17,77% 23° 51,11% 38° 84,44%
20,00% 24° 53,33% 39° 86,66%
10° 22,22% 25° 55,55% 40° 88,88%
11° 24,44% 26° 57,77% 41° 91,11%
12° 26,66% 27° 60,00% 42° 93,33%
13° 28,88% 28° 62,22% 43° 95,55%
14° 31,11% 29° 64,44% 44° 97,77%
15° 33,33% 30° 66,66% 45° 100,00%

Для наглядности будет полезным привести графическую схему, которая очень доступно показывает взаимосвязь всех упомянутых линейных параметров с углом ската и величинами его измерения.

К этому рисунку еще предстоит вернуться, когда будут рассматриваться виды кровельных покрытий.

Калькулятор расчета крутизны ската по известному значению высоты конька

Введите значения высоты конька Н и длины горизонтальной проекции ската L.

Высота конька Н (метров)

Зависимость типа кровельного покрытия от крутизны ската

Планируя постройку собственного дома, хозяин участка наверняка уже проводит «прикидку» и своей голове, и с членами семьи – как будет выглядеть их будущее жилье. Кровля в этом вопросе, безусловно, занимает одно из первостепенных значений. И вот здесь необходимо учитывать то, что далеко не всякий кровельный материал может использоваться на различных по крутизне скатах крыш. Чтобы не возникало недоразумений позднее, необходим заранее предусматривать эту взаимосвязь.

Крыши по углу наклона ската можно условно разделит на плоские (уклон до 5°), с малым уклоном (от 6 до 30°) и крутоуклонные, соответственно, с углом ската более 30°.

У каждого из типов крыш есть свои достоинства и недостатки. Например, плоские крыши имеют минимальную площадь, но потребуют особых мер гидроизоляции. На крутых крышах не задерживаются снежные массы, однако они больше подвержены ветровой нагрузке из-за своей «парусности». Так и кровельный материал – в силу собственных технологических или эксплуатационных особенностей имеет определенные ограничения на применения с разными уклонами скатов.

Обратимся к уже рассматриваемому ранее рисунку (схема A ). Черными кружками с дугообразными стрелками и синими цифрами обозначены области применения различных кровельных покрытий (острие стрелки указывает на минимально допустимое значение крутизны ската):

1 – это дранка, щепа, натуральный гонт. В этой же области лежит и применение до сих пор используемых в южных краях камышовых кровель.

2 – натуральное штучное черепичное покрытие, битумно-полимерные плитки, сланцевые плитки.

3 – рулонные материалы на битумной основе, не менее четырёх слоев, с внешней гравийной посыпкой, утопленной в слой расплавленной мастики.

4 – аналогично пункту 3, но для надёжности кровли достаточно трех слоев рулонного материала.

5 – аналогичные вышеописанным рулонные материалы (не менее трех слоев), но без наружной защитной гравийной посыпки.

6 – рулонные кровельные материалы, наклеиваемые на горячую мастику не менее, чем в два слоя. Металлочерепица, профнастил.

7 – волнистые асбестоцементные листы (шифер) унифицированного профиля.

8 – черепичное глиняное покрытие

9 – асбестоцементные листы усиленного профиля.

10 – кровельная листовая сталь с развальцовкой соединений.

11 – шиферное покрытие обычного профиля.

Таким образом, если есть желание покрыть крышу кровельным материалом определенного типа, угол уклона ската должен планироваться в указанных рамках.

Зависимость высоты конька от угла наклона крыши

Для тех читателей, которые хорошо помнят курс тригонометрии средней школы, этот раздел может показаться неинтересным. Они могут сразу его пропустить и перейти дальше. А вот подзабывшим это нужно освежить знания о взаимозависимости углов и сторон в прямоугольном треугольнике.

Для чего это надо? В рассматриваемом случае возведения крыши всегда в расчетах отталкиваются от прямоугольного треугольника. Два его катета – это длина проекции ската на горизонтальную плоскость (длина пролета, половины пролета и т.п. – в зависимости от типа крыши) и высота ската в высшей точке (на коньке или при переходе на верхние стропила – при расчете нижних стропил мансардной крыши). Понятно, что постоянная величина здесь одна – это длина пролета. А вот высоту можно изменять, варьируя угол наклона крыши.

В таблице приведены две основные зависимости, выраженные через тангенс и синус угла наклона ската. Существуют и иные зависимости (через косинус или котангенс) но в данном случае нам достаточно этих двух тригонометрических функций.

Графическая схема Основные тригонометрические соотношения
Н - высота конька
S - длина ската крыши
L - половина длины пролета (при симметричной двускатной крыше) или длина пролета (при односкатной крыше)
α - угол ската крыши
tg α = H / L Н = L × tg α
sin α = H / S S = H / sin α

Зная эти тригонометрические тождества, можно решить практически все задачи по предварительному проектированию стропильной конструкции.

Для наглядности — треугольник в приложении к крыше дома

Так, если необходимо «плясать» от четко установленной высоты подъёма конька, то отношением tg α = H / L несложно будет определить угол.

По полученному делением числу в таблице тангенсов находят угол в градусах. Тригонометрические функции часто бывают заложены в инженерные калькуляторы, они есть в обязательном порядке в таблицах Exel (для тех, кто умеет работать с этим удобным приложением. Правда, там расчет ведется не в градусах, а в радианах). Но чтобы нашему читателю не приходилось отвлекаться на поиски нужных таблиц, приведем значение тангенсов в диапазоне от 1 до 80°.

Угол Значение тангенса Угол Значение тангенса Угол Значение тангенса Угол Значение тангенса
tg(1°) 0.01746 tg(21°) 0.38386 tg(41°) 0.86929 tg(61°) 1.80405
tg(2°) 0.03492 tg(22°) 0.40403 tg(42°) 0.9004 tg(62°) 1.88073
tg(3°) 0.05241 tg(23°) 0.42447 tg(43°) 0.93252 tg(63°) 1.96261
tg(4°) 0.06993 tg(24°) 0.44523 tg(44°) 0.96569 tg(64°) 2.0503
tg(5°) 0.08749 tg(25°) 0.46631 tg(45°) 1 tg(65°) 2.14451
tg(6°) 0.1051 tg(26°) 0.48773 tg(46°) 1.03553 tg(66°) 2.24604
tg(7°) 0.12278 tg(27°) 0.50953 tg(47°) 1.07237 tg(67°) 2.35585
tg(8°) 0.14054 tg(28°) 0.53171 tg(48°) 1.11061 tg(68°) 2.47509
tg(9°) 0.15838 tg(29°) 0.55431 tg(49°) 1.15037 tg(69°) 2.60509
tg(10°) 0.17633 tg(30°) 0.57735 tg(50°) 1.19175 tg(70°) 2.74748
tg(11°) 0.19438 tg(31°) 0.60086 tg(51°) 1.2349 tg(71°) 2.90421
tg(12°) 0.21256 tg(32°) 0.62487 tg(52°) 1.27994 tg(72°) 3.07768
tg(13°) 0.23087 tg(33°) 0.64941 tg(53°) 1.32704 tg(73°) 3.27085
tg(14°) 0.24933 tg(34°) 0.67451 tg(54°) 1.37638 tg(74°) 3.48741
tg(15°) 0.26795 tg(35°) 0.70021 tg(55°) 1.42815 tg(75°) 3.73205
tg(16°) 0.28675 tg(36°) 0.72654 tg(56°) 1.48256 tg(76°) 4.01078
tg(17°) 0.30573 tg(37°) 0.75355 tg(57°) 1.53986 tg(77°) 4.33148
tg(18°) 0.32492 tg(38°) 0.78129 tg(58°) 1.60033 tg(78°) 4.70463
tg(19°) 0.34433 tg(39°) 0.80978 tg(59°) 1.66428 tg(79°) 5.14455
tg(20°) 0.36397 tg(40°) 0.8391 tg(60°) 1.73205 tg(80°) 5.67128

В случае, наоборот, когда за основу берется угол наклона кровли, высота расположения конька определяется по обратной формуле:

H = L × tg α

Теперь, имея значения двух катетов и угла наклона кровли, очень просто вычислить и требуемую длину стропила от конька до карнизного свеса. Можно применить теорему Пифагора

S = √ (L ² + H ²)

Или же, что, наверное, проще, так как уже известна величина угла, применить тригонометрическую зависимость:

S = H / sin α

Значение синусов углов — в таблице ниже.

Угол Значение синуса Угол Значение синуса Угол Значение синуса Угол Значение синуса
sin(1°) 0.017452 sin(21°) 0.358368 sin(41°) 0.656059 sin(61°) 0.87462
sin(2°) 0.034899 sin(22°) 0.374607 sin(42°) 0.669131 sin(62°) 0.882948
sin(3°) 0.052336 sin(23°) 0.390731 sin(43°) 0.681998 sin(63°) 0.891007
sin(4°) 0.069756 sin(24°) 0.406737 sin(44°) 0.694658 sin(64°) 0.898794
sin(5°) 0.087156 sin(25°) 0.422618 sin(45°) 0.707107 sin(65°) 0.906308
sin(6°) 0.104528 sin(26°) 0.438371 sin(46°) 0.71934 sin(66°) 0.913545
sin(7°) 0.121869 sin(27°) 0.45399 sin(47°) 0.731354 sin(67°) 0.920505
sin(8°) 0.139173 sin(28°) 0.469472 sin(48°) 0.743145 sin(68°) 0.927184
sin(9°) 0.156434 sin(29°) 0.48481 sin(49°) 0.75471 sin(69°) 0.93358
sin(10°) 0.173648 sin(30°) 0.5 sin(50°) 0.766044 sin(70°) 0.939693
sin(11°) 0.190809 sin(31°) 0.515038 sin(51°) 0.777146 sin(71°) 0.945519
sin(12°) 0.207912 sin(32°) 0.529919 sin(52°) 0.788011 sin(72°) 0.951057
sin(13°) 0.224951 sin(33°) 0.544639 sin(53°) 0.798636 sin(73°) 0.956305
sin(14°) 0.241922 sin(34°) 0.559193 sin(54°) 0.809017 sin(74°) 0.961262
sin(15°) 0.258819 sin(35°) 0.573576 sin(55°) 0.819152 sin(75°) 0.965926
sin(16°) 0.275637 sin(36°) 0.587785 sin(56°) 0.829038 sin(76°) 0.970296
sin(17°) 0.292372 sin(37°) 0.601815 sin(57°) 0.838671 sin(77°) 0.97437
sin(18°) 0.309017 sin(38°) 0.615661 sin(58°) 0.848048 sin(78°) 0.978148
sin(19°) 0.325568 sin(39°) 0.62932 sin(59°) 0.857167 sin(79°) 0.981627
sin(20°) 0.34202 sin(40°) 0.642788 sin(60°) 0.866025 sin(80°) 0.984808

Для тех же читателей, кто просто не хочет погружаться в самостоятельные тригонометрические расчеты, рекомендуем встроенный калькулятор, который быстро и точно определит длину ската кровли (без учета карнизного свеса) по имеющимся значениям высоты конька и длины горизонтальной проекции ската.

Калькулятор расчета длины ската кровли по известному значению высоты конька

Введите значения высоты конька Н и длины горизонтальной проекции ската L

Высота конька Н (метров)

Длина горизонтальной проекции ската L (метров)

Умелое использование тригонометрических формул позволяет, при нормальном пространственном воображении и при умении выполнять несложные чертежи, провести расчеты и более сложным по конструкции крыш.

Например, даже кажущуюся такой «навороченной» вальмовую или мансардную крышу можно разбить на совокупности треугольников, а затем последовательно просчитать все необходимые размеры.

Зависимость размеров помещения мансарды от угла наклона скатов крыши

Если хозяевами будущего дома планируется использовать чердак в качестве функционального помещения, иначе говоря – сделать мансарду, то определение угла ската крыши приобретает вполне прикладное значение.

Чем больше угол уклона — тем просторнее мансарда

Много объяснять здесь ничего не надо – приведённая схема наглядно показывает, что чем меньше угол наклона, тем теснее свободное пространство в чердачном помещении.

Чтобы стало несколько понятнее, лучше выполнить подобную схему в определенном масштабе. Вот, например, как будет выглядеть мансардное помещение в доме с шириной фронтонной части 10 метров. Следует учитывать, что высота потолка никак не может быть ниже 2 метров. (Откровенно говоря, и двух метров маловато для жилого помещения– потолок будет неизбежно «давить» на человека. Обычно исходят из высоты хотя-бы 2.5 метра).

Для образца — масштабированная схема мансарды

Можно привести уже подсчитанные средние значения получаемой в мансарде комнаты, в зависимости от угла наклона обычной двускатной крыши. кроме того, в таблице приведены величины длины стропил и площади кровельного материала с учетом 0,5 метров карнизного свеса кровли.

Угол ската крыши Высота конька Длина ската Полезная площадь мансардного помещения на 1 метр длины здания (при высоте потолка 2 м) Площадь кровельного покрытия на 1 метр длины здания
20 1.82 5.32 нет 11.64
25 2.33 5.52 0.92 12.03
30 2.89 5.77 2.61 12.55
35 3.50 6.10 3.80 13.21
40 4.20 6.53 4.75 14.05
45 5.00 7.07 5.52 15.14
50 5.96 7.78 6.16 16.56

Итак, чем круче наклон скатов, тем просторнее помещение. Однако, это сразу отзывается резким увеличением высоты стропильной конструкции, возрастанием размеров, а стало быть – и массы деталей для ее монтажа. Гораздо больше потребуется и кровельного материала – площадь покрытия также быстро растет. Плюс к этому, нельзя забывать и о возрастании эффекта «парусности» — большей подверженности ветровой нагрузке. Видам внешних нагрузок будет посвящена последняя глава настоящей публикации.

Для сравнения — крыша мансардного типа дает выигрыш по полезному пространству даже при меньшей высоте

Чтобы в определенной степени нивелировать подобные негативные последствия, проектировщики и строители часто применяют особую конструкцию мансардной крыши – о ней уже упоминалось в настоящей статье. Она сложнее в расчетах и изготовлении, но дает существенный выигрыш в получаемой полезной площади мансардного помещения с уменьшением общей высоты здания.

Зависимость величины внешних нагрузок от угла наклона крыши

Еще одно важнейшее прикладное применение рассчитанного значения угла наклона кровли – это определение степени его влияния на уровень внешних нагрузок, выпадающих на конструкцию крыши.

Здесь прослеживается интересная взаимосвязь. Можно заранее рассчитать все параметры – углы и линейные размеры, но всегда в итоге приходят к деталировке. То есть необходимо определить, из какого материала будут изготавливаться детали и узлы стропильной системы, какова должна быть их площадь сечения, шаг расположения, максимальная длина между соседними точками опоры, способы крепления элементов между собой и к несущим стенам здания и многое другое.

Вот здесь на первый план выходят нагрузки, которые испытывает конструкция крыши. Помимо собственного веса, огромное значение имеют внешние воздействия. Если не брать в расчет несвойственные для наших краев сейсмические нагрузки, то главным образом надо сосредоточится на снеговой и ветровой. Величина обеих – напрямую связана с углом расположения кровли к горизонту.

Понятно, что на огромной территории Российской Федерации среднестатистическое количество выпадаемых в виде снега осадков существенно различается по регионам. По результатам многолетних наблюдений и вычислений, составлена карта территории страны, на которой указаны восемь различных зон по уровню снеговой нагрузки.

Восьмая, последняя зона – это некоторые малозаселенные районы Дальнего Востока, и ее можно особо не рассматривать. Значения же для других зон – указаны в таблице

Рсн = Рсн.т × μ

Рсн.т – значение, которое мы нашли с помощью карты и таблицы;

Μ – поправочный коэффициент, который зависит от угла ската α

  • при α от 0 до 25° — μ=1
  • при α более 25 и до 60° — μ=0,7
  • при α более 60° снеговую нагрузку в расчет не принимают, так как снег не должен удерживаться на плоскости скатов кровли.

Например, дом возводится в Башкирии. Планируемая скатов его крыши – 35°.

Находим по таблице – зона V, табличное значение — Рсн.т = 3,2 кПа

Находим итоговое значение Рсн = 3.2 × 0,7 = 2,24 кПа

(если значение нужно в килограммах на квадратный метр, то используется соотношение

1 кПа ≈ 100 кг/м²

В нашем случае получается 224 кг/м².

С ветровой нагрузкой все обстоит намного сложнее. Дело в том, что она может быть разнонаправленной – ветер способен оказывать давление на крышу, прижимая ее к основанию, но вместе с тем возникают аэродинамические «подъемные» силы, стремящиеся оторвать кровлю от стен.

Кроме того, ветровая нагрузка воздействует на разные участки крыши неравномерно, поэтому знать только среднестатистический уровень ветровой нагрузки – недостаточно. В расчет принимаются господствующие направления ветров в данной местности («роза ветров»), степень насыщенности участка местности препятствиями для распространения ветра, высота здания и окружающих его строений, другие критерии.

Примерный порядок подсчета ветровой нагрузки выглядит следующим образом.

В первую очередь, по аналогии с ранее проведёнными расчетами, на карте определяется регион РФ и соответствующая ему зона.

Рв = Рвт × k × c

Рвт – табличное значение ветрового давления

k – коэффициент, учитывающий высоту здания и характер местности вокруг него. Определяют его по таблице:

Высота возводимого здания (сооружения) (z) Зона А Зона Б Зона В
не более 5 м 0.75 0.5 0.4
от 5 до 10 м 1.0 0.65 0.4
от 10 до 20 м 1.25 0.85 0.55
от 20 до 40 м 1.5 1.1 0.8

В таблице указаны три различные зоны:

  • Зона «А» — открытая «голая» местность, например, степь, пустыня, тундра или лесотундра, полностью открытые ветровому воздействию побережья морей и океанов, крупных озер, рек, водохранилищ.
  • Зона «Б» — территории жилых поселков, небольших городов, лесистые и пересеченные участки местности, с препятствиями для ветра, естественными или искусственными, высотой порядка 10 метров.
  • Зона «В» — территории крупных городов с плотной застройкой, со средней высотой зданий 25 метров и выше.

Дом считается соответствующим именно этой зоне, если указанные характерные особенности расположены в радиусе не менее, чем высота здания h, умноженная на 30 (например, для дома 12 м радиус зоны должен быть не мене 360 м). При высоте здания выше 60 м принимается окружность радиусом 2000 м.

c – а вот это – тот самый коэффициент, который и зависит от направления ветра на здание и от угла наклона крыши.

Как уже упоминалось, в зависимости от направления воздействия и особенностей крыши ветер может давать разнонаправленные векторы нагрузки. На схеме ниже приведены зоны ветрового воздействия, на которые обычно делится площадь крыши.

Обратите внимание – фигурирует промежуточная вспомогательная величина е. Ее принимают равной либо 2 × h , либо b , в зависимости от направления ветра. В любом случае, из двух значений берут то, что будет меньше.

Коэффициент с для каждой из зон берут из таблиц, в который учтен угол уклона кровли. Если для одного участка предусмотрены и положительное и отрицательное значения коэффициента, то проводятся оба вычисления, а затем данные суммируются.

Таблица коэффициента « с» для ветра, направленного в скат кровли

Угол ската кровли (α) F G H I J
15 ° - 0,9 -0.8 - 0.3 -0.4 -1.0
0.2 0.2 0.2
30 ° -0.5 -0.5 -0.2 -0.4 -0.5
0.7 0.7 0.4
45 ° 0.7 0.7 0.6 -0.2 -0.3
60 ° 0.7 0.7 0.7 -0.2 -0.3
75 ° 0.8 0.8 0.8 -0.2 -0.3

Таблица коэффициента « с» для ветра, направленного во фронтонную часть

Угол ската кровли (α) F G H I
0 ° -1.8 -1.3 -0.7 -0.5
15 ° -1.3 -1.3 -0.6 -0.5
30 ° -1.1 -1.4 -0.8 -0.5
45 ° -1.1 -1.4 -0.9 -0.5
60 ° -1.1 -1.2 -0.8 -0.5
75 ° -1.1 -1.2 -0.8 -0.5

Вот теперь то, подсчитав ветровую нагрузку, можно будет определить суммарное внешнее силовое воздействие для каждого участка крыши.

Рсум = Рсн + Рв

Полученное значение становится исходной величиной для определения параметров стропильной системы. В частности, в таблице, приведенной ниже, можно найти значения допустимой свободной длины стропил между точками опоры, в зависимости от сечения бруса, расстояния между стропилами, сорта материала (древесины хвойных пород) и, соответственно, уровня суммарной ветровой и снежной нагрузки.

Сорт древесины Сечение стропил (мм) Расстояние между соседними стропилами (мм)
300 400 600 300 400 600
1.0 кПа 1.5 кПа
Древесина высшего сорта 40×89 3.22 2.92 2.55 2.81 2.55 2.23
40×140 5.06 4.60 4.02 4.42 4.02 3.54
50×184 6.65 6.05 5.28 5.81 5.28 4.61
50×235 8.50 7.72 6.74 7.42 6.74 5.89
50×286 10.34 9.40 8.21 9.03 8.21 7.17
I или II сорт 40×89 3.11 2.83 2.47 2.72 2.47 2.16
40×140 4.90 4.45 3.89 4.28 3.89 3.40
50×184 6.44 5.85 5.11 5.62 5.11 4.41
50×235 8.22 7.47 6.50 7.18 6.52 5.39
50×286 10.00 9.06 7.40 8.74 7.66 6.25
III сорт 40×89 3.06 2.78 2.31 2.67 2.39 1.95
40×140 4.67 4.04 3.30 3.95 3.42 2.79
50×184 5.68 4.92 4.02 4.80 4.16 3.40
50×235 6.95 6.02 4.91 5.87 5.08 4.15
50×286 8.06 6.98 6.70 6.81 5.90 4.82
2.0 кПа 2.5 кПа
Древесина высшего сорта 40×89 4.02 3.65 3.19 3.73 3.39 2.96
40×140 5.28 4.80 4.19 4.90 4.45 3.89
50×184 6.74 6.13 5.35 6.26 5.69 4.97
50×235 8.21 7.46 6.52 7.62 6.92 5.90
50×286 2.47 2.24 1.96 2.29 2.08 1.82
I или II сорт 40×89 3.89 3.53 3.08 3.61 3.28 2.86
40×140 5.11 4.64 3.89 4.74 4.31 3.52
50×184 6.52 5.82 4.75 6.06 5.27 4.30
50×235 7.80 6.76 5.52 7.06 6.11 4.99
50×286 2.43 2.11 1.72 2.21 1.91 1.56
III сорт 40×89 3.48 3.01 2.46 3.15 2.73 2.23
40×140 4.23 3.67 2.99 3.83 3.32 2.71
50×184 5.18 4.48 3.66 4.68 4.06 3.31
50×235 6.01 5.20 4.25 5.43 4.71 3.84
50×286 6.52 5.82 4.75 6.06 5.27 4.30

Понятно, что при расчете сечения стропил, шага их установки и длины пролета (расстояния межу точками опоры), берутся показатели суммарного внешнего давления для наиболее нагруженных участков кровли. Если посмотреть на схемы и значения коэффициентов таблицы, то это – G и Н .

Чтобы упростить посетителю сайта задачу по вычислению суммарной нагрузки, ниже размещен калькулятор, который рассчитает этот параметр именно для максимально нагруженных участков.