23.06.2020

Точка росы — формула, расчет и визуализация. Точка росы в стене — расчет и нахождение Температура точки росы определяется при постоянном


В данной статье будут разобраны такие вопросы:

  • Что происходит в стене, утепленной изнутри;
  • Как определить, когда можно утеплять изнутри, а когда нельзя. Факторы, от которых это зависит.

Определение понятия "точка росы"

Для того, чтобы понимать процессы, происходящие в стене, я вначале остановлюсь на таком понятии, как точка росы в строительстве.

Определение точки росы - это температура, при которой выпадает конденсат (влага из воздуха превращается в воду). Точка с этой температурой располагается в определенном месте (на стене снаружи, где-то в толще стены или на стене внутри). В зависимости от расположения точки росы (дальше или ближе по толщине стены к внутреннему помещению) стена или сухая, или мокрая внутри. Точка росы (температура выпадения конденсата) зависит от:

  • влажности внутри помещения;
  • температуры воздуха внутри помещения.

1. Если внутри помещения температура +20 градусов, и влажность внутри помещения 60%, то на любой поверхности с температурой ниже +12 градусов выпадет конденсат.

Чем ниже влажность в помещении, тем точка росы ниже фактической температуры воздуха внутри помещения.

2. При температуре внутри помещения +20 градусов, и влажности внутри помещения 40%, то на любой поверхности с температурой ниже +6 градусов выпадет конденсат.

Чем выше влажность в помещении, тем точка росы выше и ближе к фактической температуре воздуха внутри помещения.

3. При температуре внутри помещения +20 градусов, и влажности внутри помещения 80%, то на любой поверхности с температурой ниже +16, 44 градусов выпадет конденсат.

Если относительная влажность составляет 100%, то точка росы совпадает с фактической температурой внутри помещения.

4. При температуре внутри помещения +20 градусов, и влажности внутри помещения 100%, то на любой поверхности с температурой ниже +20 градусов выпадет конденсат.

Расположение точки росы

А положение точки росы в стене зависит от:

  • толщины и материала всех слоев стены,
  • температуры внутри помещения,
  • температуры снаружи помещения,
  • влажности внутри помещения,
  • влажности снаружи помещения.

Разберем, что происходит с положением точки росы:

  • в стене вообще не утепленной;
  • в стене, утепленной снаружи;
  • в стене, утепленной изнутри.

Сразу, по каждому варианту, будем рассматривать последствия такого расположения точки росы.

Расположение точки росы в не утепленной стене

По расположению точки росы могут быть такие варианты не утепленной стены:

1. Расположение точки росы между серединой стены и наружной поверхностью стены.

Расположение точки росы в стене между серединой стены и наружной поверхностью, стена не утеплена

В этом случае стена сухая.

2. Расположение точки росы между серединой стены и внутренней поверхностью.


Расположение точки росы между серединой стены и внутренней поверхностью, стена не утеплена

В этом случае стена сухая, может замокать при резком понижении наружной температуры (ниже, чем расчетная температура по ДБН/СНиП в регионе, на несколько дней). Положение точки росы в эти несколько дней может сдвигаться на внутреннюю поверхность стены.

3. Расположение точки росы на внутренней поверхности.


Расположение точки росы на внутренней поверхности стены, стена не утеплена

Стена мокрая внутри практически весь зимний период.

Как уже разобрали, положение точки росы зависит от 5-ти факторов, описанных в части выше.

Расположение точки росы в утепленной снаружи стене

По расположению точки росы в стене, утепленной снаружи , могут быть такие варианты:

1. Если утеплитель взят нужной по теплотехническому расчету толщины, то положение точки росы - внутри утеплителя.


Расположение точки росы в утеплителе, стена утеплена снаружи

Это правильное положение точки росы. Стена в этом варианте сухая.

2. Если утеплитель взят меньшей толщины, чем положено по теплотехническому расчету, то возможны все три варианта, описанные выше для неутепленной стены. Последствия описаны там же.


Расположение точки росы в стене, утепленной снаружи (если утеплитель взят меньше расчетной толщины)

Расположение точки росы в утепленной изнутри стене

По расположению точки росы в стене, утепленной изнутри . Когда мы утепляем стену изнутри, мы ее как бы «отгораживаем» от комнатного тепла. Тем самым, мы сдвигаем положение точки росы внутрь помещения и понижаем температуру самой стены под утеплителем. То есть и точка росы (температура) и ее положение становятся такими, при которых образование конденсата более вероятно. Могут быть такие варианты:

1. Расположение точки росы в толще стены.


Расположение точки росы в толще стены, стена утеплена изнутри

В этом случае стена сухая, может замокать при резком понижении наружной температуры (ниже, чем расчетная температура по ДБН\СНиП в регионе, на несколько дней). Положение точки росы в эти несколько дней может сдвигаться на внутреннюю поверхность стены.

2. Расположение точки росы на внутренней поверхности стены, под утеплителем.


Расположение точки росы на внутренней поверхности стены, под утеплителем, стена утеплена изнутри

Стена в этом случае замокает под утеплителем весь зимний период.

3. Расположение точки росы внутри утеплителя.


Расположение точки росы в утеплителе, стена утеплена изнутри

Стена в этом случае замокает весь зимний период, кроме стены, утеплитель тоже мокрый.

Когда можно или нельзя утеплять стены изнутри

Теперь разберем, когда можно утеплять стену изнутри, когда нельзя, от чего это зависит и как зависит. Что такое это «нельзя», какие это последствия.

Основное «можно или нельзя» заключается в том, что будет со стеной после утепления ее изнутри. Если стена будет сухая,- можно. Если стена будет сухая, и только при резком, неожиданном (которое случается раз в десяток лет) похолодании может подмокнуть,- можно пробовать утеплять изнутри (на усмотрение заказчика). Если стена стабильно мокрая весь зимний расчетный период (с обычной зимней температурой по региону),- утеплять изнутри нельзя. Как мы уже выяснили выше, эти последствия зависят от положения точки росы. А положение точки росы в стене можно посчитать, и тогда точно (ДО утепления) будет понятно, можно или нельзя изнутри утеплять конкретную стену.

Примечание: Мы такой расчет делаем, задавайте вопросы в разделе и мы посчитаем Вашу конкретную ситуацию.

Теперь немного рассуждений на тему что влияет на возможность утепления изнутри, и как влияет. Эта часть статьи вызвана вопросами читателей, такого характера: «Почему в соседней ветке читателю можно утеплить изнутри, а мне нельзя, ведь у нас с ним (дальше варианты) одинаковая планировка квартиры, или дома построены из одного материала, или один город проживания, или одинаковая толщина стены и тд.

Давайте разбираться. Как мы уже выяснили выше, последствия внутреннего утепления зависят от:

  • точки росы (температуры выпадения конденсата);
  • положения точки росы в стене до и после утепления.

В свою очередь, точка росы (температура) зависит от: влажности в помещении и температуры в помещении. А влажность в помещении зависит от:

  • Режима проживания (постоянно или временно);
  • Вентиляции (и притока, и вытяжки, достаточно ли их по расчету).

А температура в помещении зависит от:

  • Качества работы отопления;
  • Степени утепленности остальных конструкций дома\ квартиры, кроме стен (потолка\крыши, окон, пола).

Положение точки росы зависит от:

  • толщины и материала всех слоев стены;
  • температуры внутри помещения. От чего она зависит - выяснили выше;
  • температуры снаружи помещения. Она зависит от того, улица снаружи или другое помещение, а также от климатической зоны;
  • влажности внутри помещения. От чего она зависит, выяснили выше;
  • влажности снаружи помещения. Она зависит от того, улица снаружи или другое помещение (и от режима эксплуатации этого помещения), а также от климатической зоны.

Теперь, если собрать ВСЕ факторы влияния на точку росы и положение точки росы , мы получим список факторов влияния, которые надо принимать во внимание при решении вопроса «можно или нельзя в конкретной ситуации утеплить изнутри конкретную стену». Вот такой список этих факторов:

  • режима проживания в помещении (постоянно или временно);
  • вентиляции (и притока, и вытяжки, достаточно ли их по расчету);
  • качества работы отопления в помещении;
  • степени утепленности остальных конструкций дома\квартиры, кроме стен (потолка\крыши, окон, пола);
  • толщина и материал всех слоев стены;
  • температуры внутри помещения;
  • влажности внутри помещения;
  • температуры снаружи помещения;
  • влажности снаружи помещения;
  • климатической зоны;
  • что находится за стеной, улица или другое помещение (его режим эксплуатации).

Становится ясно, что двух одинаковых ситуаций по утеплению изнутри может и не быть. Посмотрим, как (приблизительно, без конкретики) выглядит ситуация, когда утепление изнутри возможно:

  • помещение постоянного проживания,
  • вентиляция выполнена согласно норме (для этого помещения),
  • отопление работает хорошо, и выполнено согласно норме,
  • остальные конструкции утеплены согласно норме,
  • стена, которую планируется утеплить,- толстая, и достаточно теплая. По расчету для нее дополнительного утепления, его не должно быть боле 50мм (пенопласт, вата, ЭППС). По сопротивлению теплопередаче стена «не дотягивает» до нормы 30 и меньше %.

Если совсем упростить, то получается так: чем теплее регион, чем лучше у Вас отопление и вентиляция, чем толще и теплее стена, тем более вероятно, что утеплить изнутри можно. Я думаю, понятно, что в каждом конкретном случае нужно рассматривать свои «входящие данные» и тогда принимать решение.

Все, что написано выше, создает впечатление, что случаев, когда внутреннее утепление возможно и не вредно,- совсем мало. Это действительно так. По нашему опыту, из 100 обратившихся с идеей внутреннего утепления, только 10 могут его делать без последствий. В остальных случаях нужно утеплять снаружи.

Последствия неправильного утепления изнутри

Какие последствия утепления, когда утеплили изнутри, а было «нельзя». Как правило, это вначале мокрые стены. Потом, в зависимости от вида утеплителя,- мокрый утеплитель. Вата мокнет, а пенопласт или ЭППС - нет. Но это не меняет дела. В итоге,- это плесень и грибок на стенах. Время появления последствий - от одного года до трех.

Точка росы - это температура водяного пара, ниже которой содержащаяся в нем влага охлаждается изобарически.

Сделать дом сухим и теплым хочет каждый. Поэтому многие используют самые различные утеплители. Но работа по теплоизоляции стен не так проста, как кажется. Довольно часто случается так, что утепленная, она вдруг начинает намокать, на ней заметны следы конденсата. Появляются они не сразу, обычно только через год-три после того, как были выполнены все работы по утеплению.

Поэтому не все догадываются, что возникновение конденсата на поверхности связано с неправильно выполненной теплоизоляцией. Что является причиной такого неприятного явления? Все очень просто: это точка росы.

Что такое точка росы?

Схема образования точки росы в стене.

Когда утепляешь поверхность изнутри помещения, то отгораживаешь ее от тепла комнаты. Таким образом, положение точки росы сдвигается внутрь, ближе к комнате, температура самой стены понижается. А какой вывод из этого можно сделать? Возникновение конденсата.

Согласно определению, точка росы — это уровень температуры, при котором начинает выпадать конденсат, то есть влага, находящаяся в воздухе, превращается в воду и оседает на поверхности. Эта точка может находиться в разных местах (снаружи, внутри, посередине, ближе к какой-либо его поверхности).

В зависимости от этого показателя, стена остается сухой круглый год либо намокает при понижении температуры на улице.

Расположение точки росы зависит от того, какой уровень влажности внутри дома, температура.

Например, если температура в комнате составляет +20°C, а уровень влажности равен 60%, то конденсат выпадает на любой поверхности уже при понижении температуры до +12°C. Если уровень влажности выше и составляет 80%, то росу можно уже увидеть при +16,5°C. При влажности 100% поверхность намокает при температуре в 20°C.

Рассмотрим ситуации, возникающие при утеплении пенопластом снаружи либо изнутри:

  1. Положение точки для неутепленной поверхности. Она может находиться в толще стены ближе к улице, примерно между внешней поверхностью и серединой. Стенка при любом понижении температуры не намокает, остается сухой. Часто случается и так, что точка находится ближе к внутренней поверхности, тогда стена в большинстве случаев сухая, но намокает при резких понижениях температуры. При нахождении показателя на внутренней поверхности стена остается мокрой всю зиму.
  2. При утеплении пенопластом снаружи дома возможно возникновение нескольких ситуаций. Если выбор утеплителя, точнее его толщины, был осуществлен правильно, то точка росы будет находиться в утеплителе. Это самое правильное расположение, в таком случае стена будет при любых обстоятельствах оставаться сухой. Если же слой теплоизолятора был взят меньше, то возможно три варианта расположения точки росы:
  • посередине между центральной частью стены и внешней — стена остается сухой практически все время;
  • ближе к внутренней поверхности — при похолодании происходит выпадение росы;
  • на внутренней поверхности — зимой стена мокрая постоянно.

Для определения показателя выпадения конденсата можно использовать такую формулу:

Тр=(b*y(T,RH))/(a-y(N,RH))

Тр — это точка росы,

постоянные величины: а=17,27 и b=237,7 градусов (по Цельсию).

y(T,RH) = (aT/(b+T))+ln(RH)

Т — температура,

RH — уровень относительно влажности (больше нуля, но меньше, чем единица),

Ln — логарифм.

При использовании формулы необходимо учесть, из какого материала произведены стены, какова их толщина и многое другое. Лучше подобные вычисления выполнять, используя специальные компьютерные программы.

Когда внутреннее утепление возможно?

Таблица определения точки росы в зависимости от температуры воздуха и влажности.

Не всегда можно провести утепление изнутри, так как при неправильно выполненных действиях роса будет постоянно выпадать изнутри, приводя все строительные материалы в полную негодность, создавая некомфортный микроклимат внутри. Рассмотрим, когда делать утепление изнутри не рекомендуется, от чего это зависит.

Можно или нельзя утеплять изнутри? Решение этого вопроса во многом зависит от того, что будет происходить с конструкцией после выполнения работ. Если стена весь год остается в сухом состоянии, то работы по ее теплоизоляции изнутри помещения проводить можно, а во многих случаях даже нужно. Но если она постоянно намокает каждую зиму, то проводить теплоизоляцию нельзя категорически. Допускается утепление только в том случае, если конструкция сухая, а ее намокание происходит крайне редко, например, один раз за десять лет. Но и в таком случае работы надо проводить очень осторожно, так как в противном случае такое явление, как точка росы, будет наблюдаться постоянно.

Рассмотрим, от чего зависит возникновение точки росы, как узнать, можно или нет утеплять стены дома изнутри.

Как уже говорили, точка росы возникает из-за таких факторов, как:

  • влажность;
  • температура внутри помещения.

Влажность в помещении зависит от наличия вентиляции (вытяжки, приточной вентиляции, кондиционеров и пр.) и от режима проживания, временного либо постоянного. На температуру внутри влияет то, насколько качественно был уложен утеплитель, каков уровень теплоизоляции всех остальных конструкций дома, в том числе окон, дверей, крыши.

Отсюда можно сделать вывод, что последствия для внутреннего утепления зависят от:

  • температуры выпадения конденсатной влаги, то есть от точки росы;
  • от положения этой точки до теплоизоляции и после нее.

Как определить, где находится точка росы? Такое значение зависит от многих параметров, среди которых необходимо выделить:

  • толщину, материал изготовления стены;
  • среднюю температуру внутри помещения;
  • среднюю температуру снаружи (влияние оказывает климатическая зона, средние погодные условия в течение года);
  • влажность внутри помещения;
  • уровень влажности на улице, который зависит не только от климата, но и от условий эксплуатации дома.

Соберем все факторы в единое целое

График теплового сопротивления и смещение точки росы при применении утеплителя.

Теперь можем собрать все факторы, которые оказывают влияние на то, где будет располагаться точка росы:

  • режим проживания и эксплуатации дома;
  • наличие вентиляции и ее тип;
  • качество отопительной системы;
  • качество работы при утеплении пенопластом или другим материалом всех конструкций дома, включая крышу, двери, окна;
  • толщина отдельных слоев стены;
  • температура внутри помещения, снаружи;
  • влажность внутри помещения, снаружи;
  • климатическая зона;
  • режим эксплуатации, т.е. что находится снаружи: улица, сад, другое помещение, пристроенный гараж, теплица.

Утепление изнутри возможно, исходя из всех приведенных факторов, в таких случаях:

  • при постоянном проживании в доме;
  • при установке вентиляции согласно всем нормам для конкретного помещения;
  • при нормальной работе отопительной системы;
  • при утеплителе, который уложен для всех конструкций дома, нуждающихся в теплоизоляции;
  • если стенка сухая, имеет необходимую толщину. Согласно нормам, при утеплении пенопластом, минеральной ватой и прочим материалом толщина такого слоя не должна быть больше, чем 50 мм.

В остальных случаях выполнять утепление изнутри нельзя. Как показывает практика, в 90% случаев стенки дома можно теплоизолировать только снаружи, так как обеспечить все условия довольно сложно, а часто не совсем осуществимо.

Последствия неправильной теплоизоляции

Случаи неправильного утепления дома бывают редко. Чаще всего это происходит, когда укладывать теплоизоляцию изнутри нельзя, но вы это сделали. В таком случае даже при самом лучшем утеплителе быстро начнут возникать различные проблемы, но вначале это мокрые стенки. Как следствие, декоративная отделка теряет свой привлекательный внешний вид. После этого постепенно намокает утеплитель.

Тут все зависит от того, каким именно материалом пользовались при работах: пенопласт не намокает, тогда как многие другие материалы просто не будут успевать высохнуть, после чего на поверхности начинают появляться следы плесени, грибка, от которых избавиться уже невозможно. Поэтому намного проще сразу предусмотреть, как и при каких условиях можно производить работы по утеплению дома пенопластом или другим материалом, чем тратить средства и время на устранение последствий неправильного выполнения работ.

Точка росы — это уровень температуры, при которой появляется конденсат. Появление влаги при утеплении пенопластом зависит от многих факторов, в том числе от внутренней температуры в помещении, от значений уровня влажности. Довольно часто постоянная высокая влажность, а значит, и следы плесени на поверхности, возникает из-за неправильно проведенных работ по утеплению дома, поэтому следует не только понять, что такое точка росы, но и при каких обстоятельствах она возникает, как избежать этого негативного явления.

Количество слоев стены: 1 слой 2 слоя 3 слоя 4 слоя 5 слоев

1-ый слой

Материал 1-го слоя:

Толщина 1-го слоя: мм

3-ий слой

Материал 3-го слоя: БЕТОНЫ И РАСТВОРЫ Железобетон Бетон на гравии или щебне из природного камня Плотный силикатный бетон Керамзитобетон на керамз. песке и керамзитопенобетон Р=1800 Керамзитобетон на керамз. песке и керамзитопенобетон Р=1600 Керамзитобетон на керамз. песке и керамзитопенобетон Р=1400 Керамзитобетон на керамз. песке и керамзитопенобетон Р=1200 Керамзитобетон на керамз. песке и керамзитопенобетон Р=1000 Керамзитобетон на керамз. песке и керамзитопенобетон Р=800 Керамзитобетон на керамз. песке и керамзитопенобетон Р=600 Керамзитобетон на керамз. песке и керамзитопенобетон Р=500 Керамзитобетон на кварцевом песке с поризацией Р=1200 Керамзитобетон на кварцевом песке с поризацией Р=1000 Керамзитобетон на кварцевом песке с поризацией Р=800 Перлитобетон Р=1200 Перлитобетон Р=1000 Перлитобетон Р=800 Перлитобетон Р=600 Аглопоритобетон и бетоны на топливных шлаках Р=1800 Аглопоритобетон и бетоны на топливных шлаках Р=1600 Аглопоритобетон и бетоны на топливных шлаках Р=1400 Аглопоритобетон и бетоны на топливных шлаках Р=1200 Аглопоритобетон и бетоны на топливных шлаках Р=1000 Бетон на зольном гравии Р=1400 Бетон на зольном гравии Р=1200 Бетон на зольном гравии Р=1000 Полистиролбетон Р=600 Полистиролбетон Р=500 Газо- и пенобетон. газо- и пеносиликат Р=1000 Газо- и пенобетон. газо- и пеносиликат Р=900 Газо- и пенобетон. газо- и пеносиликат Р=800 Газо- и пенобетон. газо- и пеносиликат Р=700 Газо- и пенобетон. газо- и пеносиликат Р=600 Газо- и пенобетон. газо- и пеносиликат Р=500 Газо- и пенобетон. газо- и пеносиликат Р=400 Газо- и пенобетон. газо- и пеносиликат Р=300 Газо- и пенозолобетон Р=1200 Газо- и пенозолобетон Р=100 Газо- и пенозолобетон Р=800 Цементно-песчаный раствор Сложный (песок. известь. цемент) раствор Известково-песчаный раствор Цементно-шлаковый раствор P=1400 Цементно-шлаковый раствор P=1200 Цементно-перлитовый раствор P=1000 Цементно-перлитовый раствор P=800 Гипсоперлитовый раствор Поризованный гипсо­перлитовый раствор P=500 Поризованный гипсо­перлитовый раствор P=400 Плиты из гипса P=1200 Плиты из гипса P=1000 Листы гипсовые обшивочные (сухая штукатурка) Глиняный обыкновенный кирпич Силикатный кирпич P=2000 Силикатный кирпич P=1900 Силикатный кирпич P=1800 Силикатный кирпич P=1700 Силикатный кирпич P=1600 Керамический кирпич Р=1600 Керамический кирпич Р=1400 Камень керамический Р=1700 Кирпича силикатного утолщенного Р=1600 Кирпича силикатного утолщенного Р=1400 Камень силикатный Р=1400 Камень силикатный Р=1300 Гранит. гнейс и базальт Мрамор Известняк Р=2000 Известняк Р=1800 Известняк Р=1600 Известняк Р=1400 Туф Р=2000 Туф Р=1800 Туф Р=1600 Туф Р=1400 Туф Р=1200 Туф Р=1000 ДРЕВЕСИНА И ИЗДЕЛИЯ ИЗ НЕЕ Сосна и ель поперек волокон Сосна и ель вдоль волокон Дуб поререк волокон Дуб вдоль волокон Фанера клееная Картон облицовочный Картон строительный многослойный Плиты древесно­волокн. и древесноструж., скопо­древесноволок. Р=1000 Плиты древесно­волокн. и древесноструж., скопо­древесноволок. Р=800 Плиты древесно­волокн. и древесноструж., скопо­древесноволок. Р=400 Плиты древесно­волокн. и древесноструж., скопо­древесноволок. Р=200 Плиты фибролитовые и арболит на портландцементе Р=800 Плиты фибролитовые и арболит на портландцементе Р=600 Плиты фибролитовые и арболит на портландцементе Р=400 Плиты фибролитовые и арболит на портландцементе Р=300 Плиты волокнистые теплоизоляционные из отходов искусственного меха Р=175 Плиты волокнистые теплоизоляционные из отходов искусственного меха Р=150 Плиты волокнистые теплоизоляционные из отходов искусственного меха Р=125 Плиты льнокострич­ные изоляционные Плиты торфяные теплоизоляционные Р=300 Плиты торфяные теплоизоляционные Р=200 Пакля ТЕПЛОИЗОЛЯЦИОННЫЕ МАТЕРИАЛЫ Маты минераловатные прошивные Р=125 Маты минераловатные прошивные Р=100 Маты минераловатные прошивные Р=75 Маты минераловатные прошивные Р=50 Плиты минераловатные на синтетическом связующем Р=250 Плиты минераловатные на синтетическом связующем Р=200 Плиты минераловатные на синтетическом связующем Р=175 Плиты минераловатные на синтетическом связующем Р=125 Плиты минераловатные на синтетическом связующем Р=75 Плиты пенополистирольные Р=50 Плиты пенополистирольные Р=35 Плиты пенополистирольные Р=25 Плиты пенополистирольные Р=15 Пенополиуретан Р=80 Пенополиуретан Р=60 Пенополиуретан Р=40 Плиты из резольно­фенолформальдегидного пенопласта Р=100 Плиты из резольно­фенолформальдегидного пенопласта Р=75 Плиты из резольно­фенолформальдегидного пенопласта Р=50 Плиты из резольно­фенолформальдегидного пенопласта Р=40 Плиты полистиролбетонные теплоизоляционные Р=300 Плиты полистиролбетонные теплоизоляционные Р=260 Плиты полистиролбетонные теплоизоляционные Р=230 Гравий керамзитовый Р=800 Гравий керамзитовый Р=600 Гравий керамзитовый Р=400 Гравий керамзитовый Р=300 Гравий керамзитовый Р=200 Щебень и песок из перлита вспученного Р=600 Щебень и песок из перлита вспученного Р=400 Щебень и песок из перлита вспученного Р=200 Песок для строительных работ Пеностекло и газостекло Р=200 Пеностекло и газостекло Р=180 Пеностекло и газостекло Р=160 МАТЕРИАЛЫ КРОВЕЛЬНЫЕ, ГИДРОИЗОЛЯЦИОННЫЕ, ОБЛИЦОВОЧНЫЕ Листы асбестоцементные плоские Р=1800 Листы асбестоцементные плоские Р=1600 Битумы нефтяные строительные и кровельные Р=1400 Битумы нефтяные строительные и кровельные Р=1200 Битумы нефтяные строительные и кровельные Р=1000 Асфальтобетон Изделия из вспученного перлита на битумном связующем Р=400 Изделия из вспученного перлита на битумном связующем Р=300 Рубероид. пергамин. толь Линолеум поливинилхлоридный многослойный Р=1800 Линолеум поливинилхлоридный многослойный Р=1600 Линолеум поливинилхлоридный на тканевой подоснове Р=1800 Линолеум поливинилхлоридный на тканевой подоснове Р=1600 Линолеум поливинилхлоридный на тканевой подоснове Р=1400 МЕТАЛЛЫ И СТЕКЛО Сталь стержневая арматурная Чугун Алюминий Медь Стекло оконное

Толщина 3-го слоя: мм

5-ый слой

Материал 5-го слоя: БЕТОНЫ И РАСТВОРЫ Железобетон Бетон на гравии или щебне из природного камня Плотный силикатный бетон Керамзитобетон на керамз. песке и керамзитопенобетон Р=1800 Керамзитобетон на керамз. песке и керамзитопенобетон Р=1600 Керамзитобетон на керамз. песке и керамзитопенобетон Р=1400 Керамзитобетон на керамз. песке и керамзитопенобетон Р=1200 Керамзитобетон на керамз. песке и керамзитопенобетон Р=1000 Керамзитобетон на керамз. песке и керамзитопенобетон Р=800 Керамзитобетон на керамз. песке и керамзитопенобетон Р=600 Керамзитобетон на керамз. песке и керамзитопенобетон Р=500 Керамзитобетон на кварцевом песке с поризацией Р=1200 Керамзитобетон на кварцевом песке с поризацией Р=1000 Керамзитобетон на кварцевом песке с поризацией Р=800 Перлитобетон Р=1200 Перлитобетон Р=1000 Перлитобетон Р=800 Перлитобетон Р=600 Аглопоритобетон и бетоны на топливных шлаках Р=1800 Аглопоритобетон и бетоны на топливных шлаках Р=1600 Аглопоритобетон и бетоны на топливных шлаках Р=1400 Аглопоритобетон и бетоны на топливных шлаках Р=1200 Аглопоритобетон и бетоны на топливных шлаках Р=1000 Бетон на зольном гравии Р=1400 Бетон на зольном гравии Р=1200 Бетон на зольном гравии Р=1000 Полистиролбетон Р=600 Полистиролбетон Р=500 Газо- и пенобетон. газо- и пеносиликат Р=1000 Газо- и пенобетон. газо- и пеносиликат Р=900 Газо- и пенобетон. газо- и пеносиликат Р=800 Газо- и пенобетон. газо- и пеносиликат Р=700 Газо- и пенобетон. газо- и пеносиликат Р=600 Газо- и пенобетон. газо- и пеносиликат Р=500 Газо- и пенобетон. газо- и пеносиликат Р=400 Газо- и пенобетон. газо- и пеносиликат Р=300 Газо- и пенозолобетон Р=1200 Газо- и пенозолобетон Р=100 Газо- и пенозолобетон Р=800 Цементно-песчаный раствор Сложный (песок. известь. цемент) раствор Известково-песчаный раствор Цементно-шлаковый раствор P=1400 Цементно-шлаковый раствор P=1200 Цементно-перлитовый раствор P=1000 Цементно-перлитовый раствор P=800 Гипсоперлитовый раствор Поризованный гипсо­перлитовый раствор P=500 Поризованный гипсо­перлитовый раствор P=400 Плиты из гипса P=1200 Плиты из гипса P=1000 Листы гипсовые обшивочные (сухая штукатурка) Глиняный обыкновенный кирпич Силикатный кирпич P=2000 Силикатный кирпич P=1900 Силикатный кирпич P=1800 Силикатный кирпич P=1700 Силикатный кирпич P=1600 Керамический кирпич Р=1600 Керамический кирпич Р=1400 Камень керамический Р=1700 Кирпича силикатного утолщенного Р=1600 Кирпича силикатного утолщенного Р=1400 Камень силикатный Р=1400 Камень силикатный Р=1300 Гранит. гнейс и базальт Мрамор Известняк Р=2000 Известняк Р=1800 Известняк Р=1600 Известняк Р=1400 Туф Р=2000 Туф Р=1800 Туф Р=1600 Туф Р=1400 Туф Р=1200 Туф Р=1000 ДРЕВЕСИНА И ИЗДЕЛИЯ ИЗ НЕЕ Сосна и ель поперек волокон Сосна и ель вдоль волокон Дуб поререк волокон Дуб вдоль волокон Фанера клееная Картон облицовочный Картон строительный многослойный Плиты древесно­волокн. и древесноструж., скопо­древесноволок. Р=1000 Плиты древесно­волокн. и древесноструж., скопо­древесноволок. Р=800 Плиты древесно­волокн. и древесноструж., скопо­древесноволок. Р=400 Плиты древесно­волокн. и древесноструж., скопо­древесноволок. Р=200 Плиты фибролитовые и арболит на портландцементе Р=800 Плиты фибролитовые и арболит на портландцементе Р=600 Плиты фибролитовые и арболит на портландцементе Р=400 Плиты фибролитовые и арболит на портландцементе Р=300 Плиты волокнистые теплоизоляционные из отходов искусственного меха Р=175 Плиты волокнистые теплоизоляционные из отходов искусственного меха Р=150 Плиты волокнистые теплоизоляционные из отходов искусственного меха Р=125 Плиты льнокострич­ные изоляционные Плиты торфяные теплоизоляционные Р=300 Плиты торфяные теплоизоляционные Р=200 Пакля ТЕПЛОИЗОЛЯЦИОННЫЕ МАТЕРИАЛЫ Маты минераловатные прошивные Р=125 Маты минераловатные прошивные Р=100 Маты минераловатные прошивные Р=75 Маты минераловатные прошивные Р=50 Плиты минераловатные на синтетическом связующем Р=250 Плиты минераловатные на синтетическом связующем Р=200 Плиты минераловатные на синтетическом связующем Р=175 Плиты минераловатные на синтетическом связующем Р=125 Плиты минераловатные на синтетическом связующем Р=75 Плиты пенополистирольные Р=50 Плиты пенополистирольные Р=35 Плиты пенополистирольные Р=25 Плиты пенополистирольные Р=15 Пенополиуретан Р=80 Пенополиуретан Р=60 Пенополиуретан Р=40 Плиты из резольно­фенолформальдегидного пенопласта Р=100 Плиты из резольно­фенолформальдегидного пенопласта Р=75 Плиты из резольно­фенолформальдегидного пенопласта Р=50 Плиты из резольно­фенолформальдегидного пенопласта Р=40 Плиты полистиролбетонные теплоизоляционные Р=300 Плиты полистиролбетонные теплоизоляционные Р=260 Плиты полистиролбетонные теплоизоляционные Р=230 Гравий керамзитовый Р=800 Гравий керамзитовый Р=600 Гравий керамзитовый Р=400 Гравий керамзитовый Р=300 Гравий керамзитовый Р=200 Щебень и песок из перлита вспученного Р=600 Щебень и песок из перлита вспученного Р=400 Щебень и песок из перлита вспученного Р=200 Песок для строительных работ Пеностекло и газостекло Р=200 Пеностекло и газостекло Р=180 Пеностекло и газостекло Р=160 МАТЕРИАЛЫ КРОВЕЛЬНЫЕ, ГИДРОИЗОЛЯЦИОННЫЕ, ОБЛИЦОВОЧНЫЕ Листы асбестоцементные плоские Р=1800 Листы асбестоцементные плоские Р=1600 Битумы нефтяные строительные и кровельные Р=1400 Битумы нефтяные строительные и кровельные Р=1200 Битумы нефтяные строительные и кровельные Р=1000 Асфальтобетон Изделия из вспученного перлита на битумном связующем Р=400 Изделия из вспученного перлита на битумном связующем Р=300 Рубероид. пергамин. толь Линолеум поливинилхлоридный многослойный Р=1800 Линолеум поливинилхлоридный многослойный Р=1600 Линолеум поливинилхлоридный на тканевой подоснове Р=1800 Линолеум поливинилхлоридный на тканевой подоснове Р=1600 Линолеум поливинилхлоридный на тканевой подоснове Р=1400 МЕТАЛЛЫ И СТЕКЛО Сталь стержневая арматурная Чугун Алюминий Медь Стекло оконное

Толщина 5-го слоя: мм

2-ой слой

Материал 2-го слоя: БЕТОНЫ И РАСТВОРЫ Железобетон Бетон на гравии или щебне из природного камня Плотный силикатный бетон Керамзитобетон на керамз. песке и керамзитопенобетон Р=1800 Керамзитобетон на керамз. песке и керамзитопенобетон Р=1600 Керамзитобетон на керамз. песке и керамзитопенобетон Р=1400 Керамзитобетон на керамз. песке и керамзитопенобетон Р=1200 Керамзитобетон на керамз. песке и керамзитопенобетон Р=1000 Керамзитобетон на керамз. песке и керамзитопенобетон Р=800 Керамзитобетон на керамз. песке и керамзитопенобетон Р=600 Керамзитобетон на керамз. песке и керамзитопенобетон Р=500 Керамзитобетон на кварцевом песке с поризацией Р=1200 Керамзитобетон на кварцевом песке с поризацией Р=1000 Керамзитобетон на кварцевом песке с поризацией Р=800 Перлитобетон Р=1200 Перлитобетон Р=1000 Перлитобетон Р=800 Перлитобетон Р=600 Аглопоритобетон и бетоны на топливных шлаках Р=1800 Аглопоритобетон и бетоны на топливных шлаках Р=1600 Аглопоритобетон и бетоны на топливных шлаках Р=1400 Аглопоритобетон и бетоны на топливных шлаках Р=1200 Аглопоритобетон и бетоны на топливных шлаках Р=1000 Бетон на зольном гравии Р=1400 Бетон на зольном гравии Р=1200 Бетон на зольном гравии Р=1000 Полистиролбетон Р=600 Полистиролбетон Р=500 Газо- и пенобетон. газо- и пеносиликат Р=1000 Газо- и пенобетон. газо- и пеносиликат Р=900 Газо- и пенобетон. газо- и пеносиликат Р=800 Газо- и пенобетон. газо- и пеносиликат Р=700 Газо- и пенобетон. газо- и пеносиликат Р=600 Газо- и пенобетон. газо- и пеносиликат Р=500 Газо- и пенобетон. газо- и пеносиликат Р=400 Газо- и пенобетон. газо- и пеносиликат Р=300 Газо- и пенозолобетон Р=1200 Газо- и пенозолобетон Р=100 Газо- и пенозолобетон Р=800 Цементно-песчаный раствор Сложный (песок. известь. цемент) раствор Известково-песчаный раствор Цементно-шлаковый раствор P=1400 Цементно-шлаковый раствор P=1200 Цементно-перлитовый раствор P=1000 Цементно-перлитовый раствор P=800 Гипсоперлитовый раствор Поризованный гипсо­перлитовый раствор P=500 Поризованный гипсо­перлитовый раствор P=400 Плиты из гипса P=1200 Плиты из гипса P=1000 Листы гипсовые обшивочные (сухая штукатурка) Глиняный обыкновенный кирпич Силикатный кирпич P=2000 Силикатный кирпич P=1900 Силикатный кирпич P=1800 Силикатный кирпич P=1700 Силикатный кирпич P=1600 Керамический кирпич Р=1600 Керамический кирпич Р=1400 Камень керамический Р=1700 Кирпича силикатного утолщенного Р=1600 Кирпича силикатного утолщенного Р=1400 Камень силикатный Р=1400 Камень силикатный Р=1300 Гранит. гнейс и базальт Мрамор Известняк Р=2000 Известняк Р=1800 Известняк Р=1600 Известняк Р=1400 Туф Р=2000 Туф Р=1800 Туф Р=1600 Туф Р=1400 Туф Р=1200 Туф Р=1000 ДРЕВЕСИНА И ИЗДЕЛИЯ ИЗ НЕЕ Сосна и ель поперек волокон Сосна и ель вдоль волокон Дуб поререк волокон Дуб вдоль волокон Фанера клееная Картон облицовочный Картон строительный многослойный Плиты древесно­волокн. и древесноструж., скопо­древесноволок. Р=1000 Плиты древесно­волокн. и древесноструж., скопо­древесноволок. Р=800 Плиты древесно­волокн. и древесноструж., скопо­древесноволок. Р=400 Плиты древесно­волокн. и древесноструж., скопо­древесноволок. Р=200 Плиты фибролитовые и арболит на портландцементе Р=800 Плиты фибролитовые и арболит на портландцементе Р=600 Плиты фибролитовые и арболит на портландцементе Р=400 Плиты фибролитовые и арболит на портландцементе Р=300 Плиты волокнистые теплоизоляционные из отходов искусственного меха Р=175 Плиты волокнистые теплоизоляционные из отходов искусственного меха Р=150 Плиты волокнистые теплоизоляционные из отходов искусственного меха Р=125 Плиты льнокострич­ные изоляционные Плиты торфяные теплоизоляционные Р=300 Плиты торфяные теплоизоляционные Р=200 Пакля ТЕПЛОИЗОЛЯЦИОННЫЕ МАТЕРИАЛЫ Маты минераловатные прошивные Р=125 Маты минераловатные прошивные Р=100 Маты минераловатные прошивные Р=75 Маты минераловатные прошивные Р=50 Плиты минераловатные на синтетическом связующем Р=250 Плиты минераловатные на синтетическом связующем Р=200 Плиты минераловатные на синтетическом связующем Р=175 Плиты минераловатные на синтетическом связующем Р=125 Плиты минераловатные на синтетическом связующем Р=75 Плиты пенополистирольные Р=50 Плиты пенополистирольные Р=35 Плиты пенополистирольные Р=25 Плиты пенополистирольные Р=15 Пенополиуретан Р=80 Пенополиуретан Р=60 Пенополиуретан Р=40 Плиты из резольно­фенолформальдегидного пенопласта Р=100 Плиты из резольно­фенолформальдегидного пенопласта Р=75 Плиты из резольно­фенолформальдегидного пенопласта Р=50 Плиты из резольно­фенолформальдегидного пенопласта Р=40 Плиты полистиролбетонные теплоизоляционные Р=300 Плиты полистиролбетонные теплоизоляционные Р=260 Плиты полистиролбетонные теплоизоляционные Р=230 Гравий керамзитовый Р=800 Гравий керамзитовый Р=600 Гравий керамзитовый Р=400 Гравий керамзитовый Р=300 Гравий керамзитовый Р=200 Щебень и песок из перлита вспученного Р=600 Щебень и песок из перлита вспученного Р=400 Щебень и песок из перлита вспученного Р=200 Песок для строительных работ Пеностекло и газостекло Р=200 Пеностекло и газостекло Р=180 Пеностекло и газостекло Р=160 МАТЕРИАЛЫ КРОВЕЛЬНЫЕ, ГИДРОИЗОЛЯЦИОННЫЕ, ОБЛИЦОВОЧНЫЕ Листы асбестоцементные плоские Р=1800 Листы асбестоцементные плоские Р=1600 Битумы нефтяные строительные и кровельные Р=1400 Битумы нефтяные строительные и кровельные Р=1200 Битумы нефтяные строительные и кровельные Р=1000 Асфальтобетон Изделия из вспученного перлита на битумном связующем Р=400 Изделия из вспученного перлита на битумном связующем Р=300 Рубероид. пергамин. толь Линолеум поливинилхлоридный многослойный Р=1800 Линолеум поливинилхлоридный многослойный Р=1600 Линолеум поливинилхлоридный на тканевой подоснове Р=1800 Линолеум поливинилхлоридный на тканевой подоснове Р=1600 Линолеум поливинилхлоридный на тканевой подоснове Р=1400 МЕТАЛЛЫ И СТЕКЛО Сталь стержневая арматурная Чугун Алюминий Медь Стекло оконное

Толщина 2-го слоя: мм

4-ый слой

Материал 4-го слоя: БЕТОНЫ И РАСТВОРЫ Железобетон Бетон на гравии или щебне из природного камня Плотный силикатный бетон Керамзитобетон на керамз. песке и керамзитопенобетон Р=1800 Керамзитобетон на керамз. песке и керамзитопенобетон Р=1600 Керамзитобетон на керамз. песке и керамзитопенобетон Р=1400 Керамзитобетон на керамз. песке и керамзитопенобетон Р=1200 Керамзитобетон на керамз. песке и керамзитопенобетон Р=1000 Керамзитобетон на керамз. песке и керамзитопенобетон Р=800 Керамзитобетон на керамз. песке и керамзитопенобетон Р=600 Керамзитобетон на керамз. песке и керамзитопенобетон Р=500 Керамзитобетон на кварцевом песке с поризацией Р=1200 Керамзитобетон на кварцевом песке с поризацией Р=1000 Керамзитобетон на кварцевом песке с поризацией Р=800 Перлитобетон Р=1200 Перлитобетон Р=1000 Перлитобетон Р=800 Перлитобетон Р=600 Аглопоритобетон и бетоны на топливных шлаках Р=1800 Аглопоритобетон и бетоны на топливных шлаках Р=1600 Аглопоритобетон и бетоны на топливных шлаках Р=1400 Аглопоритобетон и бетоны на топливных шлаках Р=1200 Аглопоритобетон и бетоны на топливных шлаках Р=1000 Бетон на зольном гравии Р=1400 Бетон на зольном гравии Р=1200 Бетон на зольном гравии Р=1000 Полистиролбетон Р=600 Полистиролбетон Р=500 Газо- и пенобетон. газо- и пеносиликат Р=1000 Газо- и пенобетон. газо- и пеносиликат Р=900 Газо- и пенобетон. газо- и пеносиликат Р=800 Газо- и пенобетон. газо- и пеносиликат Р=700 Газо- и пенобетон. газо- и пеносиликат Р=600 Газо- и пенобетон. газо- и пеносиликат Р=500 Газо- и пенобетон. газо- и пеносиликат Р=400 Газо- и пенобетон. газо- и пеносиликат Р=300 Газо- и пенозолобетон Р=1200 Газо- и пенозолобетон Р=100 Газо- и пенозолобетон Р=800 Цементно-песчаный раствор Сложный (песок. известь. цемент) раствор Известково-песчаный раствор Цементно-шлаковый раствор P=1400 Цементно-шлаковый раствор P=1200 Цементно-перлитовый раствор P=1000 Цементно-перлитовый раствор P=800 Гипсоперлитовый раствор Поризованный гипсо­перлитовый раствор P=500 Поризованный гипсо­перлитовый раствор P=400 Плиты из гипса P=1200 Плиты из гипса P=1000 Листы гипсовые обшивочные (сухая штукатурка) Глиняный обыкновенный кирпич Силикатный кирпич P=2000 Силикатный кирпич P=1900 Силикатный кирпич P=1800 Силикатный кирпич P=1700 Силикатный кирпич P=1600 Керамический кирпич Р=1600 Керамический кирпич Р=1400 Камень керамический Р=1700 Кирпича силикатного утолщенного Р=1600 Кирпича силикатного утолщенного Р=1400 Камень силикатный Р=1400 Камень силикатный Р=1300 Гранит. гнейс и базальт Мрамор Известняк Р=2000 Известняк Р=1800 Известняк Р=1600 Известняк Р=1400 Туф Р=2000 Туф Р=1800 Туф Р=1600 Туф Р=1400 Туф Р=1200 Туф Р=1000 ДРЕВЕСИНА И ИЗДЕЛИЯ ИЗ НЕЕ Сосна и ель поперек волокон Сосна и ель вдоль волокон Дуб поререк волокон Дуб вдоль волокон Фанера клееная Картон облицовочный Картон строительный многослойный Плиты древесно­волокн. и древесноструж., скопо­древесноволок. Р=1000 Плиты древесно­волокн. и древесноструж., скопо­древесноволок. Р=800 Плиты древесно­волокн. и древесноструж., скопо­древесноволок. Р=400 Плиты древесно­волокн. и древесноструж., скопо­древесноволок. Р=200 Плиты фибролитовые и арболит на портландцементе Р=800 Плиты фибролитовые и арболит на портландцементе Р=600 Плиты фибролитовые и арболит на портландцементе Р=400 Плиты фибролитовые и арболит на портландцементе Р=300 Плиты волокнистые теплоизоляционные из отходов искусственного меха Р=175 Плиты волокнистые теплоизоляционные из отходов искусственного меха Р=150 Плиты волокнистые теплоизоляционные из отходов искусственного меха Р=125 Плиты льнокострич­ные изоляционные Плиты торфяные теплоизоляционные Р=300 Плиты торфяные теплоизоляционные Р=200 Пакля ТЕПЛОИЗОЛЯЦИОННЫЕ МАТЕРИАЛЫ Маты минераловатные прошивные Р=125 Маты минераловатные прошивные Р=100 Маты минераловатные прошивные Р=75 Маты минераловатные прошивные Р=50 Плиты минераловатные на синтетическом связующем Р=250 Плиты минераловатные на синтетическом связующем Р=200 Плиты минераловатные на синтетическом связующем Р=175 Плиты минераловатные на синтетическом связующем Р=125 Плиты минераловатные на синтетическом связующем Р=75 Плиты пенополистирольные Р=50 Плиты пенополистирольные Р=35 Плиты пенополистирольные Р=25 Плиты пенополистирольные Р=15 Пенополиуретан Р=80 Пенополиуретан Р=60 Пенополиуретан Р=40 Плиты из резольно­фенолформальдегидного пенопласта Р=100 Плиты из резольно­фенолформальдегидного пенопласта Р=75 Плиты из резольно­фенолформальдегидного пенопласта Р=50 Плиты из резольно­фенолформальдегидного пенопласта Р=40 Плиты полистиролбетонные теплоизоляционные Р=300 Плиты полистиролбетонные теплоизоляционные Р=260 Плиты полистиролбетонные теплоизоляционные Р=230 Гравий керамзитовый Р=800 Гравий керамзитовый Р=600 Гравий керамзитовый Р=400 Гравий керамзитовый Р=300 Гравий керамзитовый Р=200 Щебень и песок из перлита вспученного Р=600 Щебень и песок из перлита вспученного Р=400 Щебень и песок из перлита вспученного Р=200 Песок для строительных работ Пеностекло и газостекло Р=200 Пеностекло и газостекло Р=180 Пеностекло и газостекло Р=160 МАТЕРИАЛЫ КРОВЕЛЬНЫЕ, ГИДРОИЗОЛЯЦИОННЫЕ, ОБЛИЦОВОЧНЫЕ Листы асбестоцементные плоские Р=1800 Листы асбестоцементные плоские Р=1600 Битумы нефтяные строительные и кровельные Р=1400 Битумы нефтяные строительные и кровельные Р=1200 Битумы нефтяные строительные и кровельные Р=1000 Асфальтобетон Изделия из вспученного перлита на битумном связующем Р=400 Изделия из вспученного перлита на битумном связующем Р=300 Рубероид. пергамин. толь Линолеум поливинилхлоридный многослойный Р=1800 Линолеум поливинилхлоридный многослойный Р=1600 Линолеум поливинилхлоридный на тканевой подоснове Р=1800 Линолеум поливинилхлоридный на тканевой подоснове Р=1600 Линолеум поливинилхлоридный на тканевой подоснове Р=1400 МЕТАЛЛЫ И СТЕКЛО Сталь стержневая арматурная Чугун Алюминий Медь Стекло оконное

Толщина 4-го слоя: мм

Атмосферный воздух всегда содержит некоторое количество влаги в виде водяного пара, что и обусловливает его влажность, причем в теплом воздухе всегда больше, чем в холодном. При температуре воздуха +20 °С и относительной влажности 60% в воздухе содержится 10,4 г водяных паров на 1 м³ сухого воздуха, которые создают парциальное давление 1403 Па. При температуре –10°С и относительной влажности 60% в воздухе содержится около 1,3 г пара на 1 м³ сухого воздуха, создающего парциальное давление 156 Па. Из-за разницы парциальных давлений между внутренним и наружным воздухом через стену происходит постоянная диффузия водяных паров из теплого помещения наружу. В результате в реальных условиях эксплуатации материал в конструкциях находится в несколько увлажненном состоянии.

Количество влаги в виде пара в воздухе нельзя повышать бесконечно - в конце концов наступает такое насыщение паром, что влага начинает конденсироваться в виде капель воды на любой поверхности, и даже на пылинках, летающих в воздухе. Так, например, формируются дождевые капли: водяной пар в воздухе собирается в капельки, если есть частицы, к которым можно «прилипнуть». Над океанами водяной пар может смачивать частицы соли и образовывать капельки. Или, если температура снизилась до 0°С либо еще ниже, вода может намерзать на пылевые частицы, поднятые ветром в воздух. Из обычной пыли возникают ледяные кристаллы. Другие мелкие частицы, например дым, также могут образовывать гранулы, вокруг которых собираются водяные облака. Так вот - вернёмся к теме - это предельное содержание пара зависит только от температуры и не зависит от давления воздуха. Этот пар в максимальном своём количестве создаёт, соответственно, максимальное давление и называется давлением насыщенного водяного пара или максимальной упругостью водяного пара и обозначается буквой Е, измеряется в Паскалях.

Ещё разок, соберём всё в одно предложение - максимальная упругость водяного пара Е соответствует максимально возможному насыщению воздуха водяным паром F . Чем выше будет температура воздуха, тем больше будет значение Е , т. е. тем больше предельное количество влаги Fмакс может содержаться в воздухе.

Связь между давлением пара и его количеством выражается формулой:

F = 0.00794E / (1 + t/273)

Интересно, что математически вычислить величину Е или F невозможно. В диапазоне температур от 0°С до +40°С величина давления пара Е с точностью до ±1% описывается экспонентой, но при понижении температуры отклонение достигает 130% при температуре -47°С! Приближённая формула выглядит так:

Погрешность в диапазоне температур от 0°С до +40°С менее 1%, однако в диапазоне от 0°С до -20°С погрешность возрастает до 30%, а к -45°С переваливает за 100%. В диапазоне от +40°С до +50°С погрешность в районе 3%.

Для точных расчётов используют таблицы с экспериментальными данными, которые приведены в нормативных документах по теплотехние, например в ТКП 45-2.04-43-2006:

Упругость водяного пара в воздухе, также как и его абсолютная влажность, не дает представления о степени насыщения воздуха влагой, если при этом не указана его температура. Например, если дано е = 1400 Па, то при температуре воздуха +23 °С это составит только половину возможной максимальной его упругости (Е = 2809 Па). При +12 °С это соответствует полному насыщению воздуха влагой, а при +10 °С водяной пар вообще не может иметь такую упругость. Чтобы выразить степень насыщения воздуха влагой, ввели понятие его относительной влажности. Относительная влажность воздуха φ выражается в процентах как отношение действительной упругости водяного пара в воздухе е к максимальной его упругости Е , соответствующей данной температуре. Следовательно, имеем:

φ = е / Е · 100%

Отсюда можно выразить парциальное давление водяного пара в воздухе, е :

e = E · φ / 100 .

Например, при 20°С максимальное парциальное давление составляет Е = 2338 Па . При влажности воздуха 40% парциальное давление водяного пара е = 2338 · 40 / 100 = 935 Па . Если температура воздуха данной влажности повысится, то его относительная влажность φ понизится, т. к. величина упругости водяного пара е останется без изменения, а значение максимальной упругости Е увеличится с повышением температуры. Наоборот, при охлаждении воздуха по мере понижения его температуры будет увеличиваться его относительная влажность вследствие уменьшения величины Е . При некоторой температуре, когда Е станет равно е , относительная влажность воздуха будет φ = 100 %, т. е. воздух достигнет полного насыщения водяным паром. Вот эта температура и носит название - точка росы для данной влажности воздуха.

Таким образом, точка росы есть та температура, при которой воздух данной влажности достигает полного насыщения водяным паром.

Если продолжать охлаждение воздуха ниже точки росы, то упругость водяного пара, содержащегося в нём, будет понижаться соответственно значениям Е для данной температуры и излишнее количество влаги будет конденсироваться, т.е. превращаться в капельножидкое состояние. Такое явление наблюдается в природе в виде образования туманов около рек в летнее время; когда с заходом солнца воздух охлаждается, его относительнаявлажность повышается и температура воздуха падает ниже точки росы. С восходом солнца по мере согревания воздуха понижается его относительная влажность: капельки влаги, образующие туман, постепенно испаряются и туман рассеивается. В зимнее время образование туманов связано или с понижением температуры воздуха, или с поступлением масс теплого влажного воздуха, который, охлаждаясь при смешивании с холодным воздухом, конденсирует влагу, образуя туман. Точка росы имеет большое значение для оценки влажностного режима ограждения, и ее приходится определять по данной влажности воздуха.

В связи с тем, что само определение Е является экспериментальным, а не высчитываемым математически, точка росы высчитывается тоже только приблизительно и в диапазоне от 0 до +40°С по формуле:

где a =17.27; b =237.7°C; T =температура в °С; ln - нат.логарифм;

RH =относительная влажность в объёмных долях (0 < RH < 1.0).

Но при результате рассчёта Tр менее 0°С формула начинает существенно отличаться от реальности, поэтому существуют опять-таки экспериментально подтверждённые таблицы в сводах правил. А лучше просто воспользоваться . Для общего представления я приведу табличку с правильно вычисленной точкой росы для разных температур и влажности из ТКП 45-2.04-43-2006 (слева).

Или вот мой небольшой флеш-калькулятор, корректно работающий в диапазоне температур -50°С... +50°С, составленный на основе таблиц из КТП для диапазона -25 ... +30°С и из книги Landolt-Bornstein, Physikalich - chemische - Tabellen T II (Берлин, 1923) для всего остального диапазона. Заодно калькулятор вычисляет максимальное давление водяного пара при заданной температуре, давление водяного пара в воздухе при заданной влажности, вычисляет максимальную абсолютную влажность и абсолютную влажность воздуха (количество воды, содержащейся в 1м³). Для работы калькулятора требуется установленный флеш-плеер (https://get.adobe.com/ru/flashplayer/ )

В климатических зонах, в которых условия меняются в зависимости от времени года либо времени суток, перед строителями стоит непростая задача выбора и расчета правильного количества стройматериалов для обустройства жилища и создания в нем комфортного микроклимата. Появляется вопрос защиты от минусовой температуры, ветров и влажности. Ответом служит простое слово – утепление. Но его эффективность напрямую зависит от точки росы, которая показывает, какое количество водяных паров есть в воздухе.

Точка росы: немного истории

С давних пор люди, которые даже не задумывались об определении какой-то там точки росы, строили себе жилища, чтобы отдохнуть в условиях полной тишины, когда ни насекомые, ни звери тебя не тревожат, не говоря уже о погодных явлениях. Если на тропическом острове хватает простенького домика из природных материалов, так как в этой местности держится комфортная температура воздуха круглый год, то совсем иной может быть ситуация в другой климатической зоне, где температура в помещении отличается от температуры на улице на несколько десятков градусов. Как же поддерживать комфортные условия в жилище при таких погодных условиях? Правильно, строить стены из соответствующего материала, который все эти напасти выдерживает, и утеплять их. Но и этого мало – нужно еще знать, что такое точка росы, и научиться правильному ее расчету.

Существуют строительные нормы, в которых для любых регионов рассчитаны различные значения, включая толщину стен здания для определенного материала, толщину утеплителя для определенной толщины стен и т.п. К сожалению, некоторые заказчики, в целях экономии материалов и уменьшении затрат на строительство, берут данные показатели по нижним границам. Здесь-то они могут наткнуться на «подводные рифы». В постоянно меняющемся климате нет гарантии, что мороз этой зимой не будет слишком сильным. В итоге, если при строительстве определение точки росы было не правильным или вообще не проводилось, из-за смен температуры и влажности на улице, внутри помещения начинают мокнуть стены, а со временем появляются плесень и грибок.

Наши предки испробовали множество стройматериалов, которые обеспечивали в регионах с суровыми зимами надежную защиту от морозов и снега, воды и дождей весной-осенью и зноя летом. Им хватало построить избу с толстыми дышащими стенами (так сказать, с запасом), поставить хорошую печь внутри, обеспечив правильную циркуляцию теплого воздуха, и дело было сделано. В таком жилище любой человек чувствовал себя уютно, даже не задаваясь вопросом о расчете точки росы. Но шло время…

С появлением больших городов и их развитием люди стали строить многоэтажные дома. Начали применять новые материалы в строительстве. Стройфирмы и частники стали экономить на материале, руководствуясь при строительстве нижними границами значений строительных нормативных актов. Кроме того, в холодную и зимнюю пору в многоквартирных (и не только) домах стали использовать не тепло от печки, а центральное отопление либо системы индивидуального отопления, работающие по тому же принципу.

Зачем нужен правильный расчет точки росы при утеплении дома?

Приходилось ли вам видеть не утепленный дом, в котором (особенно когда минус на улице) стены у потолка или пола влажные? Что это за влага? Оказывается, роса. Внутри помещения? Да! И не только внутри помещения, но и в стенах, в полу.

Влажность, температура и атмосферное давление. При изменении этих трех величин происходит выпадение осадков. Осадки бывают в виде дождя, снега и в виде росы. О последней поговорим подробнее.

В результате соприкосновения холодной поверхности и влажного теплого воздуха, его влажность падает, и на этой поверхности начинает образовываться конденсат. Данный процесс можно наблюдать на стенках стакана с холодным напитком.

Температуру, при которой этот конденсат выпадает, и называют температурой точки росы (ТТР). При определенном значении температуры и атмосферного давления при повышении влажности воздуха повышается и значение точки росы, которое выражается в градусах. Стенки стакана со льдом имеют температуру точки росы. Таким образом, данное понятие используют для того, чтобы каким-то образом указать содержание водяного пара в воздухе. Рассчитав все правильно, вы узнаете значение температуры, при котором влажность воздуха доходит до 100 процентов. Если эта температура равняется температуре воздуха (она не может ее превышать), значит, образуется туман или дождь (зависит от давления). Если она значительно меньше, осадков не будет.

Итак, если есть влажный воздух и объект, температура которого имеет ТТР, на данном предмете будет скапливаться влага. Вот почему нужно проводить определение точки росы при различных строительных работах, включая воздвижение стен, их утепление, заливку наливных полов, теплоизоляцию крыш зданий и т.п. К примеру, при , если температура на улице будет такой, что точка росы будет находиться в районе от центра стены, ближе к внутреннему ее краю, вы увидите мокрое пятно у себя в комнате, пока температура на улице не повысится. Если подобное будет продолжаться в течение некоторого времени, на данных поверхностях образуется грибок, любящий сочетание влажности, тепла и углекислого газа (который мы выдыхаем из легких). Вот теперь мы и приблизились к основному моменту.

Определение точки росы

Пример № 1

Возьмем, допустим, очень часто встречающийся в строительстве случай: устройство наливных полов. Влажность воздуха в помещении и температура основы, на которую будет наноситься покрытие, играет большую роль. Ведь если пол будет иметь ТТР, влага, выделяющаяся в нем, может негативно сказаться на прочности будущего покрытия – появляются всякого рода деформации, которые вскоре превращаются в отслоение покрытия. Чтобы избежать подобного, необходимо измерить влажность в помещении (гигрометром) и температуру воздуха. Расчет точки росы проводим по формуле:

Или исходя из готовой таблицы:


Нажмите, чтобы увеличить

К примеру, если точка росы получилась 11 градусов Цельсия, а температура основы не выше точки росы на 5 градусов, устанавливать наливной пол не рекомендуется.

Пример №2

Обустройство внешнего утепления дома пенопластом или . В этом случае дело обстоит гораздо сложнее. Ведь нужно измерять температуру и влажность снаружи и внутри помещения во всевозможных комбинациях, которые случаются в вашей климатической зоне. На помощь строителям разработаны нормы СП 23-101-2004 «Проектирование тепловой защиты зданий» и СНиП 23-02-2003 «Тепловая защита зданий». Также производители систем утепления предоставляют на своих сайтах специальные калькуляторы по расчету толщины изолятора в зависимости от параметров стен и климатических условий, чтобы точка росы не оказалась в ненужном месте.