24.01.2019

Самодельные ветровики. Как сделать ветрогенератор своими руками из автомобильного генератора.


Устройство данного ветрогенератора, принципиально ничем не отличается от других аналогов. В статье описан весь процесс изготовления от начала до конца. На фото ниже отображены все металлические детали (кроме хвоста) используемые в ветряке. Используемые автозапчасти не Б/У. Начнем с хаба (ступица) и вала. Диаметр каждого ротора 400 мм., выполнены они из 12 мм., стали. Данные роторы были вырезаны на ЧПУ-станке гидроабразивной резки. Вырезаны они качественно и с отверстиями, заплачено за это было около 70 долларов. Механизм поворота ветряка сделан из трехдюймовой трубы длинной 400 мм. Вал для ступицы закрепляем внутри трубы диаметром 100 мм., через 2 стальных кольца. Кронштейн для хвоста из 12 мм., стали и высотой 150 мм., установлен под углом 18°.

На фото – готовый каркас. Если бы я делал его снова, то возможно изменил бы кое-что. А именно:

  • некоторые части изготовил бы немного толще
  • кронштейн для хвоста сделал бы более массивным, а также увеличил бы диаметр механизма поворота
  • увеличил ось и хаб

Хотя, мой самодельный домашний ветрогенератор и так хорошо исполняет свою работу.


Статор будет диаметром 500 мм. Я сделал шаблон диаметром 500 мм., проделал шесть отверстий по краям и одно по центру для вала. Установил этот шаблон на вал и с помощью болтов прикрепил к нему кронштейны и приварил их. Таким образом, кронштейны расположены точно и при сварке они не шевелились.

А это шаблон для размещения магнитов на роторе. Как можно заметить будет использоваться 16 магнитов. Сами магниты размером 40x75x20 мм., мощные и опасные.


А это шаблон приблизительного расположения катушек. В дальнейшем он послужит основанием статора.


Прикрепляем магниты к ротору с помощью супер-клея. В дальнейшем, пространство вокруг магнитов нужно будет залить эпоксидной или полиэфирной смолой.


Делаем из фанеры намоточный станок. Форма сердечника – как на фото. Диаметр кругов 150 мм. Толщина статора будет 15 мм., поэтому изготавливаемые катушки должны быть, немного тоньше.


Чтобы подобрать оптимальные размеры для катушек, была намотана тестовая, содержащая 79 витков проводом 2.5 мм. Она будет установлена между роторами и по ней можно будет определить нужное количество витков при расчетной скорости вращения. Это 5 – метровый ветрогенератор и значит, скорость вращения будет 70 – 80 оборотов в минуту.


Вырезаем форму и прикрепляем к ней катушку. Саму форму прикрепляем к кронштейнам.



Теперь необходимо измерить параметры катушки. Для измерения количества оборотов использовали оптический тахометр, а для замера эл. показателей мультиметр. При 70 оборотах в минуту, катушка дала напряжение 2.4 В.

Уточнение. Расположение магнитов получилось слишком близким друг к другу. Ближе к центру, расстояние между магнитами составляло менее 10 мм. Это приносит потери в катушку, т.к. мы имеем два противоположных полюса.
Было решено оставить все на своих местах, но стоит отметить, можно использовать магниты меньшего размера это и вес ротора уменьшит.

Задняя часть ветряка с тестовой катушкой. Как Вы можете заметить, использовалось еще балластное сопротивление, с помощью которого можно измерить мощность ветряка.


Просверливаем отверстия для соединения роторов. Сила притяжения очень сильная, поэтому нужно быть предельно аккуратным. Устанавливаем фронтальную часть.



С фронтальной частью катушка выдавала 5.4 В, при 70 оборотах в минуту. Я считаю что минимальная скорость вращения будет около 100 оборотов, поэтому катушки буду мотать более толстым проводом и с меньшим количеством витков.
Была намотана новая катушка и протестирована под нагрузкой резистора с сопротивлением 1 Ом. При ~ 100 оборотах катушка выдавала 6 В и ток 6 А (36 Вт). Я не совсем уверен в своих расчетах, но мне кажется, что при использовании 12 катушек, соединенных звездой, они дадут около 400 Вт, при 100 оборотах в минуту.

На эту работу ушло два дня.


Длина хвоста ветряка 2.5 м. Из толстостенной трубы диаметром 45 мм., сделана шарнирная ось хвоста. Ответная часть шарнира (по которой скользит хвост) изготовлена из трубы (диаметр 50 мм.) с прорезью.


Расправленная хвостовая часть домашнего ветрогенератора.


Сложив хвост, мы измерили расстояние между механизмом поворота ветряка и хвостом, для того, чтобы изготовить стальной «бампер». Его мы приварили к хвосту. Данный «бампер» защитит лопасти ветряка в тот момент, когда хвост будет сложен (при сильном ветре). На этом все работы с металлом заканчиваются.


Пульверизатором красим каркас, роторы и хвост акриловой краской (предварительно покрыв грунтовкой).



Это форма для сборки статора (диметр 500 мм., толщина 15 мм., диаметр круга в центре статора 180 мм.). Изготовлена она, для правильного расположения катушек. Как можете заметить в центре расположен болт, он предназначен для притягивания крышки (когда будем заливать смолой). По краям вокруг формы будем использовать четыре ступицы.


Статор состоит из 12 катушек. Каждая катушка весит 550 г., содержит 68 витков, намотана из двух медных проводов сечением 1.65 мм2., однако можно было намотать и одним проводом сечением 3.3 мм2. При 75 оборотах в минуту, катушки выдают 48 В. На 4 магнита приходится 3 катушки, это дает нам простую схему соединения, для получения трех фаз от генератора ветряка.
Данный генератор содержит 7.2 кг., меди и 11 кг., магнитов. Обошлось все это в 700 долларов.


Каждая фаза состоит из четырех последовательно соединенных катушек. Подрезаем выводы катушек и счищаем газовой горелкой лак с концов.


Припаиваем последовательно выводы катушек. Изолируем места пайки термоусадочной трубкой.


По окончанию паяльных работ, располагаем на шаблоне все катушки и закрепляем их скотчем.



Удаляем весь скотч и соединяем обмотки генератора соединением «звезда».


Натираем форму воском (например, автомобильным). Промазываем полиэфирной смолой боковые части и низ формы. Укладываем слой стеклоткани (это сделает статор прочным) и заливаем этот слой полиэфирной смолой. Далее укладываем в форму скрепленные катушки. Смешиваем смолу с тальком и заливаем катушки. Поверх укладываем слой стеклоткани и промазываем смолой. Накрываем форму крышкой и стягиваем струбцинами. Оставляем на ночь, до полного отвердевания смолы.


Роторы заливать попроще. Из фанеры вырезаем внутреннюю часть диаметром 200 мм., и плотно прижимаем к металлическому основанию (чтобы нигде не подтекало). Снаружи обматываем лентой. Заливаем, как и статор: полиэфирную смолу смешиваем с тальком.


После того как смола окончательно затвердела. Просверливаем в статоре шесть отверстий диаметром 12 мм., в дальнейшем с помощью этих отверстий статор прикрепим к 6 кронштейнам. При разметке отверстий обратите внимание на то, чтобы отверстия располагались между катушками.


Просверливаем еще три отверстия (9 мм.) для латунных ботов, они послужат контактами подключения. Позаботьтесь о том, что бы все металлические части возле ротора были из нержавеющей стали, иначе магниты будут притягивать к себе болты и затруднять старт ветрогенератора в слабый ветер.



Монтируем на каркас ветрогенератора хаб. Позже мы сможем отцентрировать ось и вставить шплинт в гайку, которая прикручивает ось.


Устанавливая статор, позаботьтесь о том, чтобы расстояние между ним и ротором было 2 мм.


На фото снизу, видна посаженная передняя часть ротора, который притянут тремя болтами. Роторы должны быть выровнены относительно друг друга в магнитном поле (южный полюс переднего ротора, находится напротив северного полюса заднего ротора).



Теперь займемся лопастями для ветряка.

Изготовлением лопастей занимался мой сосед Скотт (владелец мастерской по дереву).
Характеристики:
ширина у основания 350 мм.
ширина у концов 150 мм.
уклон на концах 3 градуса в середине 6
длина 2 м
фронтальная часть плоская.

Длина лопастей 2 м., дает диаметр ветряка 5 м.


Концы лопастей. Толщина у основания 50 мм., середина 40 мм., конец 20 мм.


Эти лопасти будут установлены между двумя хабами из фанеры, толщиной 20 мм. Диаметр хабов 660 мм.


Перед установкой лопастей, красим их и покрываем льняным маслом, это убережет их от различных вредных воздействий. Далее прикрепляем лопасти к хабам. Каждая лопасть крепится тремя болтами.


На фото мы измеряем расстояние между лопастями ветряка, для правильного их расположения. После того как все лопасти установлены, дополнительно стягиваем их с хабом шурупами. По 15 шурупов с каждой стороны.


К сожалению, сделать фотографии изготовления хвоста ветрогенератора я забыл. Он изготовлен из прочной фанеры толщиной 60 мм. Хвост у ветряка стреловидной формы диной 130 мм. и шириной 60 мм. Покрашен и покрыт льняным маслом. Прикреплен четырьмя болтами к хвостовой балке.

Итак, ветряк готов, осталось только установить его. Что касается схемы проводки, она реализована самым простым способом. Верхняя часть мачты ветрогенератора изготовлена из металлической трубы диаметром 60 мм. На трубе находится толстая шайба, а внутри трубы втулка из пластика. Провода проведены внутри мачты. При повороте ветряка, провода будут немного скручиваться, но это не страшно. Внизу мачты, прикреплен разъем для подключения кабеля.


Перед тем как начать подъем установки, мы отбалансировали лопасти ветряка. Проводили это следующим образом: опустили самый тяжелый элемент на шесть часов, на противоположные лопасти добавили груз (грузом служили саморезы, они позволяют наиболее точно провести работу). Проделывали это с каждой лопастью.


Мачта получилась достаточно высокой – 18 метров. Как Вы можете заметить, дело проходило зимой. Чтобы мой пикап не скользил по снегу, на колеса я прикрепил противоскользящие цепи, а в кузов уложил несколько бревен.


Самодельный ветряк полностью готов к установке.
Перед подъемом, было решено снять лопасти, чтобы случайно их не повредить.


Установленная мачта с генератором.


Полностью готовый к работе ветряк.


В ветряный день.


При сильном ветре, хвост складываю. К слову, при 27 м/с, конструкция прекрасно справляется с нагрузкой.


Отключения электросети по различным причинам, к сожалению, еще случаются в сельской, да и, увы, не только сельской местности. Вот для таких-то случаев хорошо иметь свою домашнюю электростанцию, которая обеспечила бы дом аварийным освещением. Соорудить токодающий агрегат сможет каждый, кто следит за нашими публикациями по применению универсальной моторной установки (УМУ) (см....

  • Моя ПВЭС проста в изготовлении, не требует особых материалов. Электрическим генератором служит велосипедная «динамка», вал которой вращается с помощью пропеллера. Лопасти пропеллера 17 вырезаются из фанеры толщиной 3 мм и крепятся винтами М4 к втулке 16, выстроганной из деревянного бруска. При изготовлении втулки надо учитывать следующее: лопасти устанавливают так, чтобы...

  • Использование энергии маленьких рек не стоит актуально в промышленных масштабах, однако может быть очень полезным в некоторых частных случаях. Так можно организовать электроснабжение лесного дома или хутора, к которому невозможно подвести электричество. На этой фотографии – исходная плотина. Из нее торчит 4-х дюймовая ПВХ-труба, вода стекает в обратно в реку,...

  • Всегда хотел получить электричество из ручья, протекающего по периметру моего дома. Около трех лет назад я установил временную турбину, чтобы проверить, будет ли работоспособным турбинное колесо большего размера. Демо-версия этого колеса была сделана из старых подставок для абразивных кругов и деревянных паллет в качестве лопастей. В качестве генератора я использовал...
  • Если раньше ветряки можно было встретить не часто, то сегодня эта сфера активно развивается и опыт по созданию приобрели многие.

    Область применения устройств разнообразна: они обеспечивают электричеством дома, качают воду, напрямую к ним подключают сельскохозяйственное оборудование (например, дробилки) и нагревают ёмкости с водой, которые могут стать аккумуляторами тепла для жилища.

    Промышленные модели всем хороши, кроме стоимости, поэтому рассмотрим, как сделать ветрогенератор (ветряк) для частного дома своими руками и что для этого потребуется.

    Суть работы ветрогенератора – превращение кинетической энергии ветра в электрическую. Каждый элемент системы выполняет свою функцию:

    • Ветряное колесо, лопасти. Улавливают движение воздушных масс, вращаются и приводят в движение вал.
    • На валу может быть сразу установлен генератор, а может быть угловой редуктор, который передаст движение вниз на кардан. Благодаря использованию редуктора можно добиться повышения оборотов (мультипликатор).
    • Генератор – преобразует вращательную энергию в электрическую. Если генератор выдаёт стабильный ток, то его цепляют к аккумуляторам. Если нет – промежуточно устанавливается реле-регулятор напряжения.
    • Аккумуляторов в системе может и не быть, но с ними работа более стабильна – они используют ветреные часы для подзарядки и расходуют накопленный потенциал, когда ветер стихает.
    • Инвертор – служит для преобразования напряжения в нужную величину, например, в 220V. Нужен для удобства, поскольку большинство приборов рассчитаны на такое напряжение. Но назначение ветряка может быть различным, поэтому не в каждую схему включают инвертор.
    • Анемоскоп – прибор, который используют для мощных ветроустановок. Он собирает данные о скорости и направлении ветра. В самодельных конструкциях практически не встречается. Обычно делают небольшой флюгер и поворотный механизм.
    • Мачта – или опора, на которой будет закреплён пропеллер. На высоте больше шансов поймать стабильный и сильный ветер, поэтому важно уделить внимание мачте, которая должна выдерживать нагрузки.

    Ветряки могут быть горизонтальными (с классическим воздушным винтом) и вертикальными (роторные). Горизонтальные установки имеют наибольший КПД, поэтому их чаще всего воспроизводят при самостоятельном изготовлении.

    Генератор вертикального типа

    Но такие ветряки нужно поворачивать навстречу ветру, поскольку при боковом потоке он перестаёт работать. А роторный ветрогенератор, сделанный своими руками, тоже имеет свои преимущества.

    Конструкция вертикальных систем может сильно отличаться, но есть у них общие особенности.

    • Вертикально расположенные турбины поймают ветер, откуда бы он ни дул (горизонтальные модели нужно оснащать направляющей), что очень удобно, если ветер в конкретной местности не стабильный, переменный.
    • Такую конструкцию можно расположить прямо на земле (конечно, если там будет достаточно ветра).
    • Сделать установку проще, чем горизонтальную.

    Единственный минус – относительно невысокий КПД.

    Мощность устройства

    Во-первых, нужно определить, какой мощности ветряк требуется, с какими задачами и нагрузками он должен справляться.

    Обычно альтернативные источники энергии устанавливают, как дополнительный, который только помогает основному энергоснабжению.

    И агрегаты мощностью от 500 Вт – это уже неплохо.

    Для отопления небольшого дома понадобится около 2-3 кВт.

    Но мощность ветряка зависит от 2 факторов:

    1. Диаметра лопастей.
    2. Скорости ветра.

    Желаемое соотношение можно определить по таблице для горизонтальных устройств (на пересечении скорости ветра и диаметра лопастей – мощность в ваттах).

    Скорость ветра/Диаметр лопастей 3 4 5 6 7 8 9 10 11
    3 8 15 27 42 63 90 122 143
    13 31 61 107 168 250 357 490 650
    30 71 137 236 376 564 804 1102 1467
    53 128 245 423 672 1000 1423 1960 2600
    83 196 383 662 1050 1570 2233 3063 4076
    120 283 551 953 1513 2258 3215 4410 5866
    162 384 750 1300 2060 3070 4310 6000 8000
    212 502 980 1693 2689 4014 5715 7840 10435
    268 653 1240 2140 3403 5080 7230 9923 13207

    Например, если чаще всего дуют ветра от 5 до 8 м/с, а нам нужно, чтобы ветряк выдавал 1,5 — 2 кВт, то нужно рассматривать конструкции диаметром от 6 м.

    Лопасти

    По форме лопасти могут быть:
    1. Крыльчатого вида.
    2. Парусного типа.

    Парусные – плоские, это менее продуктивная схема. Они не учитывают аэродинамические силы, а вращаются только под напором ветряного потока.

    Только 10 % энергии ветра будет преобразована в электрическую.

    У крыльчатого типа наружные и внутренние поверхности различаются по площади. Также важно расположить лопасти под углом 6-10 ° к ветру.

    Какой материал использовать на лопасти

    На старинных мельницах изготавливался тонкий деревянный каркас из жердей с перемычками, на который натягивались полотняные «крылья». Когда ткань ветшала, её заменяли. Как вариант, можно использовать плотные материалы, такие, как брезент.

    Но есть и альтернативы, как можно сделать лопасти для ветрогенератора своими руками:

    • Для небольшого пропеллера можно сделать пластиковые лопасти, разрезав на части трубу ПВХ.
    • «Паруса» вырезают из фанеры.
    • Крупный агрегат можно снабдить лопастями из деревянных досок (не важно, что каждая лопасть будет тяжёлой, главное, чтобы они уравновешивали друг друга).
    • Можно использовать лёгкий металл, например дюралюминий.

    Если ветер в местности порывистый, предпочтительнее делать увесистые лопасти, тогда система будет работать более стабильно.

    Диаметр используемой трубы должен ровняться пятой части её длины. Отрезок разрезается вдоль на 4 части, в основании вырезается квадрат 5х5 (это будет место крепления), а затем делается косой срез, заужающий лопасть от основания к концу. Рваный край обрабатывается наждаком.

    Для тех, кто любит путешествовать, ходить в походы или на рыбалку, такое устройство как будет просто незаменимым. Что это такое и как изготовить такой генератор своими руками, читайте далее.

    Как организовать отопление без газа и дров, читайте .

    Наверняка, вы слышали, что в военные времена выпускали автомобили, которые ездили на дровах. В чем состоит актуальность газогенератора в наше время, читайте в этой теме: . А также вы найдете инструкцию по изготовлению агрегата своими руками.

    Вертикальный ветрогенератор своими руками

    Используемые материалы и оборудование

    Габариты турбины могут быть выбраны произвольно – чем больше, тем мощнее. В примере диаметр изделия – 60 см.

    Для изготовления вертикальной турбины понадобится:

    1. Труба Ø 60 см (желательно из нержавеющей стали – оцинковка, дюраль и т.д.).
    2. Прочный пластик (два диска диаметром 60 см).
    3. Уголочки для крепления лопастей (по 6 шт. на каждую) – 36 шт.
    4. Для основы – ступица автомобильная.
    5. Гайки, шайбы винты для крепления.

    Оборудование и инструмент:

    1. Лобзик.
    2. Болгарка.
    3. Дрель.
    4. Отвёртка.
    5. Ключи.
    6. Перчатки, маска.

    Для балансировки лопастей можно использовать небольшую металлическую пластину, магниты, а при небольшом дисбалансе можно просто просверлить отверстия.

    Чертеж ветрогенератора


    Чертеж устройства ветрогенератора

    Изготовление вертикального ветряка

    1. Металлическая труба разрезается вдоль так, чтобы получилось 6 одинаковых лопастей.
    2. Из пластика вырезается две одинаковых окружности (диаметр 60 см). Это будет верхняя и нижняя опора турбины.
    3. Чтобы немного облегчить конструкцию, можно вырезать в верхней опоре по центру круг Ø 30 см.
    4. В зависимости от того, сколько на автомобильной ступице отверстий, размечаются по ним точно такие же отверстия для крепления в нижней пластиковой опоре. Просверливаются дрелью.
    5. По шаблону нужно разметить расположение лопастей (два треугольника, образующих звезду). Отмечаются места крепления уголков. На двух опорах должно получиться идентично.
    6. Лопасти обрезать лучше не по одной, а все сразу (используется болгарка).
    7. Места креплений уголков нужно отметить и на лопастях. Затем просверлить отверстия.
    8. При помощи уголков лопасти крепятся к кругам-основаниям болтами и гайками через шайбы.

    Чем длиннее лопасти, тем мощнее будет агрегат, но тем труднее его будет отбалансировать, в сильный ветер конструкцию «разболтает».

    Генератор своими руками

    Для ветряка нужно подбирать самовозбуждающийся генератор на постоянных магнитах (такие использовались в тракторах Т-4, МТЗ, т-16, т-25).

    Если поставить обычный автомобильный генератор, у них обмотка напряжения работает от аккумулятора, то есть: нет напряжения – нет возбуждения.

    Значит, если установить автогенератор + аккумулятор, и долгое время будет слабый ветер, аккумулятор просто разрядится и когда ветер появится вновь, система не запустится.

    Либо изготовить ветрогенератор на неодимовых магнитах своими руками. Выдавать такой агрегат будет при слабом ветре 1,5 кВт, максимально, при сильном ветре 3,5 кВт. Инструкция по шагам:

    Делаются два металлических блина, диаметром по 50 см.

    На них по периметру на супер-клей крепятся по 12 неодимовых магнитов на каждой (размером примерно 50 х 25 х 1,2 мм). Магниты чередуются: «север» — «юг».

    Блины размещаются друг напротив друга, полюса тоже ориентируются «север» — «юг».

    Между ними размещается самодельный статор. Это 9 катушек медной проволоки сечением 3 мм. По 70 витков в каждой. Между собой они соединяются по схеме «звезда» и заливаются полимерной смолой. Катушки наматываются в одну сторону. Для удобства начало и конец обмотки нужно пометить (например, изолентой разных цветов).


    Самодельный генератор для ветряка из неодимовых магнитов

    Толщина статора около 15 — 20 мм. При его изготовлении нужно предусмотреть выходы обмоток с катушек через болты с гайками. С них будет идти питание генератора.

    Расстояние между статором и ротором – 2 мм.

    Суть работы в том, что север и юг магнитов меняются местами, что заставляет электрический ток «бегать» через катушку.

    Магниты роторов будут очень сильно притягиваться. Чтобы соединить детали плавно, нужно просверлить в них отверстия и нарезать резьбу для шпилек. Роторы сразу выравниваются относительно друг друга и, постепенно, при помощи ключей, опускается верхний на нижний. После всего временные шпильки убираются.

    Процесс сборки

    • На мачте устанавливается кронштейн для крепления статора (он может быть трёх или шести лопастной).
    • Над ним закрепляется гайками ступица.
    • В ступице 4 шпильки. На них закручивается генератор.
    • Статор генератора соединяется с кронштейном, неподвижно закреплённым на мачте.
    • На вторую пластину ротора закрепляется лопастная турбина.
    • От статора провода клеммами подключаются на регулятор напряжения.

    Монтаж установки, которая превратит ветер в энергию

    Чтобы установить собранную конструкцию на длинной мачте (а она будет довольно тяжёлой), нужно сделать следующее:

    1. В земле бетонируется надёжное основание.
    2. Во время заливки, в него вливают шпильки для крепления мощного шарнира (легко делается своими руками).
    3. После полного затвердевания, шарнир одевается на шпильки и закрепляется гайками.
    4. Мачта крепится к подвижной половине шарнира.
    5. В верхней части мачты при помощи фланца (приваривается), крепятся три — четыре растяжки. Понадобится стальной трос.
    6. За один из тросов мачта на шарнире поднимается (можно тянуть автомобилем).
    7. Растяжки фиксируют строго вертикальное положение мачты.


    Ветряк из тракторного генератора

    Место установки

    От правильно подобранного места расположения ветряка будет зависеть эффективность его работы. Нужно найти место, где лопастям будет доступно максимальное количество ветра.

    Это должно быть открытое пространство, возвышенность или крыша строения – подальше от деревьев и домов. И дело не только в помехах, но и в том, что устройство производит во время работы некоторый шум, а значит, может мешать спокойной жизни соседей.

    Иногда на некотором удалении от жилого дома строят небольшой домик, в котором можно разместить оборудование и аккумуляторы, а на его крыше закрепляют ветрогенератор, можно даже в паре с солнечными батареями.

    Сейчас все больше людей проявляют интерес к альтернативным источникам энергии. И частный дом — отличное поле для экспериментов.

    Самодельный ветрогенератор представляет собой установку для выработки электрической энергии за счет использования ветра. Подобные устройства обычно используются в качестве альтернативного источника электроэнергии. Самодельный ветрогенератор для дома способен полностью обеспечивать электричеством семью из нескольких человек. Такие установки являются эффективным способом генерации электроэнергии в населенных пунктах, которые удалены от центральных энергосетей. Ветрогенератор приводится в движение силой ветра, которая затем преобразуется в энергию вращательного движения. Установки на 30 кВт способны использоваться в качестве автономного источника электричества для обеспечения потребностей промышленных и жилых объектов.

    Особенности самодельных ветрогенераторов

    Для того, чтобы обеспечить электроэнергией частный дом можно использовать вертикальный ветрогенератор мощностью до 2 кВт. Принцип работы ветроэлектрической установки заключается в преобразовании кинетической энергии ветряного потока в механическую энергию лопастей. Механическая энергия в свою очередь вращает ротор и генерирует электрический ток.

    Стандартный ветрогенератор состоит из следующих узлов:

    • вращающиеся лопасти
    • ротор турбины
    • генератор и его ось
    • инвертор, преобразующий переменный ток в постоянный
    • аккумулятор

    Ветрогенератор может быть дополнительно оснащен контроллером. Самодельный контроллер для ветрогенератора используется для заряда аккумулятора и контроля за состоянием батареи. При полном заряде аккумулятора контроллер останавливает ветряк.

    Работа ветряного генератора осуществляется следующим образом. При вращении ротора генерируется трехфазный переменный ток, который направляется через контроллер и затем подзаряжает батарею постоянного тока. После инвертор преобразует ток для потребления и пускает его для того, чтобы обеспечить освещение и электропитание для телевизора, холодильника и другой бытовой техники.


    Виды ветрогенераторов

    Ветряки могут различаться по следующим параметрам:

    • количество лопастей
    • материалы изготовления
    • ориентация оси вращения относительно поверхности земли
    • шаговый признак винта

    Многолопастные модели более эффективны по сравнению с двух- или трехлопастными, поскольку они приводятся в движении при самых малых проявлениях воздушных потоков. Лопасти могут быть жесткими или парусными. Жесткие обычно делаются из металла или стеклопластика. По направлению оси вращения различаются вертикальные и горизонтальные модификации.

    Более широкое применение получили ветрогенераторы с горизонтальной осью вращения ротора. Такие установки отличаются высоким КПД, улучшенной защитой от ураганных порывов ветра и простой регулировкой мощности. Вертикальные модели просты в монтаже, бесшумны и могут работать даже при слабых порывах ветра.

    Модель на неодимовых магнитах


    Самодельный ветрогенератор на неодимовых магнитах становится все более популярным во многих российских регионах. В качестве основы такого устройства необходимо использовать ступицу от авто с тормозными дисками. Деталь лучше разобрать и проверить на исправность, смазав подшипники и удалив ржавчину.


    Неодимовые магниты наклеиваются на диски ротора. К примеру можно взять двадцать магнитов небольшого размера. При выборе количества магнитов нужно помнить, что в однофазном генераторе количество полюсов должно совпадать с числом магнитных элементов. Для трехфазной модели это соотношение может быть 2 к 3 или 4 к 3. В процессе установки магнитов нужно чередовать их полюса. Чтобы не ошибиться желательно использовать прямоугольные магниты. Для крепления магнитов нужно использовать самый надежный клей.

    Ролик по сборке такого генератора можно посмотреть тут:

    itemprop="video" >

    Генератор на магнитах будет работать эффективно, если статорные катушки будут правильно рассчитаны. По опыту известно, что для зарядки аккумулятора на 12 В, в катушках должно быть поровну распределено около 1000 витков. Намотка катушек осуществляется толстыми проводами, чтобы снизить сопротивление. Мачта ветрогенератора должна быть высотой от шести и более метров. Под мачту нужно вырыть яму с дальнейшей заливкой бетона. Лопасти для устройства изготавливаются из поливинилхлоридных труб.

    Модель из автомобильного генератора


    Самодельный ветрогенератор из автомобильного генератора необходимо делать из комплектующих (аккумулятор, реле и прочее) с одной машины. При этом для создания ветряка лучше использовать автомобильный генератор от мощной техники (например от трактора).

    Поскольку потребителям необходим переменный ток, то необходимо предусмотреть инвертор или преобразователь. В регионах с высокой скоростью ветра можно устанавливать ветрогенераторы для выработки больших мощностей.

    Для сборки такой модели понадобится следующее:

    • автомобильный генератор на 12 В
    • аккумулятор
    • вольтметр
    • реле аккумуляторной зарядки
    • лопасти
    • крепежный материал

    В начале делается ротор. Оптимальным решением будет создание роторного колеса из четырех лопастей. Этот элемент делается из листового железа. При возможности можно использовать железную бочку.

    Готовый ветряк соединяется с осью генератора. Для этого высверливается отверстие, соединение фиксируется болтами. После этого собирается электрическая схема и устанавливается мачта. Затем нужно закрепить автомобильный генератор с проводами, которые подсоединяются к аккумулятору и преобразователю напряжения. Для правильной сборки лучше использовать подготовленные чертежи.

    Подобная установка монтируется достаточно быстро без особых сложностей. Такой ветрогенератор хорош простотой, надежностью и бесшумной работой.

    Видео со сборкой такого ветрогенератора можно посмотреть здесь:

    itemprop="video" >

    Модель из асинхронного двигателя

    Самодельные ветрогенераторы из асинхронного двигателя до 10квт нашли широкое применение для бытовых целей. Для изготовления такого устройства в первую очередь необходимо подобрать электродвигатель с низкими оборотами, у которого имеется три или четыре пары полюсов.


    Для изменения двигателя под нужды генератора необходимо проточить ротор и приклеить к нему магниты при помощи эпоксидного клея. Статор перематывается более толстым проводом, чтобы повысить ток. Проточку ротора можно осуществить на токарном станке.


    Перед тем, как наклеить магниты ротор нужно разметить на полюса. Для того, чтобы рассчитать необходимое количество магнитов нужно определить длину окружности ротора после проточки. Эта длина соответствует высоте втулки. Толщина магнитов должна находится в диапазоне (0,1- 0,15) D, где D – это диаметр окружности ротора. После этого рассчитывается число секций, куда будут приклеиваться магниты с одним полюсом. Число секций составит L/p, где p – число полюсов электродвигателя, а L- высота втулки.

    Магниты должны располагаться под небольшим скосом. Полюса должны чередоваться. Магниты располагаются плотно друг к другу и после приклеивания на эпоксидку заматываются скотчем.

    Видео с такой моделью ветрогенератора можно посмотреть тут:

    itemprop="video" >

    По завершению сборки ветрогенератора его нужно проверить на выходную мощность. Для этого ротор приводится во вращении со скоростью, которая соответствует номинальной скорости модифицированного электродвигателя. Такие испытания можно сделать при помощи дрели и лампочек с разной мощностью.

    Оптимальный вариант ветрогенератора нужно выбирать исходя из необходимой мощности из климатических условий конкретного региона.

    Содержание:

    Воздушные массы обладают неисчерпаемыми запасами энергии, которую человечество использовало еще в давние времена. В основном сила ветра обеспечивала движение судов под парусами и работу ветряных мельниц. После изобретения паровых двигателей данный вид энергии потерял свою актуальность.

    Лишь в современных условиях ветровая энергия вновь стала востребованной в качестве движущей силы, прикладываемой к электрическим генераторам. Они еще не получили широкого распространения в промышленных масштабах, но становятся все более популярными в частном секторе. Иногда бывает просто невозможно подключиться к линии электропередачи. В таких ситуациях многие хозяева конструируют и изготавливают ветрогенератор для частного дома своими руками из подручных материалов. В дальнейшем они используются в качестве основных или вспомогательных источников электроэнергии.

    Теория идеального ветряка

    Данная теория разрабатывалась в разное время учеными и специалистами в области механики. Впервые она была разработана В.П. Ветчинкиным в 1914 году, а в качестве основы использовалась теория идеального гребного винта. В этих исследованиях был впервые выведен коэффициент использования ветряной энергии идеальным ветряком.

    Работы в этой области были продолжены Н.Е. Жуковским, который вывел максимальное значение данного коэффициента, равное 0,593. В более поздних работах другого профессора - Сабинина Г.Х. уточненное значение коэффициента составило 0,687.

    В соответствии с разработанными теориями, идеальное ветряное колесо должно обладать следующими параметрами:

    • Ось вращения колеса должна быть параллельна со скоростью ветрового потока.
    • Количество лопастей бесконечно большое, с очень малой шириной.
    • Нулевое значение профильного сопротивления крыльев при наличии постоянной циркуляции вдоль лопастей.
    • Вся сметаемая поверхность ветряка обладает постоянной потерянной скоростью воздушного потока на колесе.
    • Стремление угловой скорости к бесконечности.

    Выбор ветроустановки

    Выбирая модель ветрогенератора следует учитывать необходимую мощность, обеспечивающую работу приборов и оборудования с учетом графика и периодичности включения. Она определяется путем ежемесячного учета потребляемой электроэнергии. Дополнительно значение мощности может определяться в соответствии с техническими характеристиками потребителей.


    Следует учитывать и тот фактор, что питание всех электроприборов осуществляется не напрямую от ветрогенератора, а от инвертора и комплекта аккумуляторных батарей. Таким образом, генератор мощностью в 1 кВт способен обеспечить нормальное функционирование аккумуляторов, питающих четырехкиловаттный инвертор. В результате, бытовые приборы с аналогичной мощностью обеспечиваются электроэнергией в полном объеме. Большое значение имеет правильный выбор батарей. Особое внимание следует обратить на такие параметры, как и ток зарядки.

    При выборе конструкции ветряного двигателя учитываются следующие факторы:

    • Направление вращения ветряного колеса - вертикальное или горизонтальное.
    • Форма лопаток для вентилятора может быть в виде паруса, с прямой или криволинейной поверхностью. В некоторых случаях используются комбинированные варианты.
    • Материал для лопаток и технология их изготовления.
    • Размещение вентиляторных лопастей с различным наклоном, относительно потока проходящего воздуха.
    • Количество лопастей, включенных в вентилятор.
    • Необходимая мощность, передаваемая от ветряного двигателя к генератору.

    Кроме того, необходимо учесть среднегодовую скорость ветра для конкретной местности, уточненную в метеослужбе. Уточнять направление ветра не требуется, поскольку современные конструкции ветрогенераторов самостоятельно поворачиваются в другую сторону.

    Для большинства местностей Российской Федерации наиболее оптимальным вариантом будет горизонтальная ориентация оси вращения, поверхность лопаток криволинейная вогнутая, которую воздушный поток обтекает под острым углом. На величину мощности, забираемой от ветра, влияет площадь лопасти. Для обычного дома вполне достаточно площади 1,25 м 2 .


    Число оборотов ветряка зависит от количества лопастей. Быстрее всего вращаются ветрогенераторы с одной лопастью. В таких конструкциях для уравновешивания используется противовес. Следует учитывать и тот факт, что при низкой скорости ветра, ниже 3 м/с, ветряные установки становятся неспособными забирать энергию. Для того чтобы агрегат воспринимал слабый ветер, площадь его лопастей должна быть увеличена как минимум до 2 м 2 .

    Расчет ветрогенератора

    Перед выбором ветрогенератора необходимо определить скорость и направление ветра, наиболее характерные в месте предполагаемого монтажа. Следует помнить, что вращение лопастей начинается при минимальной скорости ветра 2 м/с. Максимального КПД удается достичь, когда этот показатель достигает значения от 9 до 12 м/с. То есть, для того чтобы обеспечить электричеством небольшой загородный дом, потребуется генератор с минимальной мощностью 1 кВт/ч и ветер со скоростью не менее 8 м/с.

    Скорость ветра и диаметр винта оказывают непосредственное влияние на мощность, вырабатываемую ветряной электроустановкой. Точно рассчитать эксплуатационные характеристики той или иной модели возможно с помощью следующих формул:

    1. Расчеты в соответствии с площадью вращения выполняются следующим образом: P = 0,6 х S х V 3 ,где S - площадь, перпендикулярная направлению ветра (м 2), V - скорость ветра (м/с), Р - мощность генераторной установки (кВт).
    2. Для расчетов электроустановки по диаметру винта применяется формула:Р = D 2 х V 3 /7000, в которой D является диаметром винта (м), V - скорость ветра (м/с), Р - мощность генератора (кВт).
    3. При более сложных вычислениях учитывается плотность воздушного потока. Для этих целей существует формула: P = ξ х π х R 2 х 0,5 х V 3 х ρ х η ред х η ген,где ξ является коэффициентом использования ветровой энергии (безмерная величина), π = 3,14, R - радиус ротора (м), V - скорость воздушного потока (м/с), ρ - плотность воздуха (кг/м 3), η ред - КПД редуктора (%), η ген - КПД генератора (%).

    Таким образом, электроэнергия, производимая ветрогенератором, возрастает количественно в кубическом соотношении с повышающейся скоростью ветрового потока. Например, при повышении скорости ветра в 2 раза, выработка ротором кинетической энергии возрастет в 8 раз.

    При выборе места установки ветрогенератора необходимо отдавать предпочтение участкам без больших построек и высоких деревьев, которые создают преграду для ветра. Минимальное расстояние от жилых домов составляет от 25 до 30 метров, в противном случае шум во время работы будет создавать неудобства и дискомфорт. Ротор ветряка должен быть расположен на высоте, превышающей ближайшие постройки не менее чем на 3-5 м.


    Если подключение загородного дома к общей сети не планируется, в этом случае можно воспользоваться вариантами комбинированных систем. Работа ветряной установки будет значительно эффективнее при использовании ее совместно с дизель-генератором или солнечной батареей.

    Как сделать ветрогенератор своими руками

    Независимо от типа и конструкции ветрогенератора, каждое устройство в качестве основы, оборудуется похожими элементами. Во всех моделях имеются генераторы, лопасти из различных материалов, подъемники, обеспечивающие нужный уровень установки, а также дополнительные аккумуляторы и система электронного управления. Наиболее простыми для изготовления считаются агрегаты роторного типа либо аксиальные конструкции с использованием магнитов.

    Вариант 1. Роторная конструкция ветрогенератора.

    В конструкции роторного ветряного генератора используется две, четыре или более лопастей. Подобные ветрогенераторы не в состоянии полностью обеспечить электроэнергией большие загородные дома. Они используются преимущественно в качестве вспомогательного источника электричества.


    В зависимости от расчетной мощности ветряка, подбираются необходимые материалы и комплектующие:

    • Генератор с автомобиля на 12 вольт и автомобильный аккумулятор.
    • Регулятор напряжения, преобразующий переменный ток с 12 до 220 вольт.
    • Емкость с большими размерами. Лучше всего подойдет алюминиевое ведро или кастрюля из нержавеющей стали.
    • В качестве зарядного устройства можно воспользоваться реле, снятым с автомобиля.
    • Потребуется выключатель на 12 В, лампа заряда с контроллером, болты с гайками и шайбами, а также металлические хомуты с прорезиненными прокладками.
    • Трехжильный кабель с минимальным сечением 2,5 мм 2 и обычный вольтметр, снятый с любого измерительного устройства.

    В первую очередь выполняется подготовка ротора из имеющейся металлической емкости - кастрюли или ведра. Она размечается на четыре равные части, на концах линий проделываются отверстия, чтобы облегчить разделение на составные части. Затем емкость разрезается ножницами по металлу или болгаркой. Из получившихся заготовок вырезаются лопасти ротора. Все замеры должны тщательно проверяться на соответствие размерам, в противном случае конструкция будет работать неправильно.

    Далее определяется сторона вращения шкива генератора. Как правило, он вращается по часовой стрелке, но лучше это проверить. После этого роторная часть соединяется с генератором. Во избежание дисбаланса в движении ротора, отверстия для креплений в обеих конструкциях должны располагаться симметрично.

    Чтобы увеличить скорость вращения края лопастей следует немного выгнуть. С возрастанием угла изгиба, потоки воздуха будут более эффективно восприниматься роторной установкой. В качестве лопастей используются не только элементы разрезанной емкости, но и отдельные детали, соединяемые с металлической заготовкой, имеющей форму окружности.

    После крепления емкости к генератору, всю полученную конструкцию нужно целиком установить на мачте с помощью металлических хомутов. Затем монтируется проводка и собирается . Каждый контакт должен включаться в собственный разъем. После подключения проводка крепится к мачте проволокой.

    По окончании сборки осуществляется подключение инвертора, аккумулятора и нагрузки. Аккумулятор подключается кабелем с сечением 3 мм 2 , для всех остальных подключений вполне достаточно сечения 2 мм 2 . После этого ветрогенератор можно эксплуатировать.

    Вариант 2. Аксиальная конструкция ветрогенератора с применением магнитов.

    Аксиальные ветряки для дома представляют собой конструкцию, одним из основных элементов которой являются неодимовые магниты. По своим эксплуатационным качествам они значительно опережают обычные роторные агрегаты.


    Ротор является основным элементом всей конструкции ветрогенератора. Для его изготовления лучше всего подойдет ступица автомобильного колеса в комплекте с тормозными дисками. Деталь, находившуюся в эксплуатации, следует подготовить - очистить от грязи и ржавчины, смазать подшипники.

    Далее необходимо правильно распределить и закрепить магниты. Всего их понадобится 20 штук, размером 25 х 8 мм. Магнитное поле в них расположено по длине. Четные магниты будут полюсами, они располагаются по всей плоскости диска, с чередованием через один. Затем определяются плюсы и минусы. Один магнит поочередно касается других магнитов на диске. Если они притягиваются, значит полюс положительный.

    При увеличенном количестве полюсов, необходимо соблюдать определенные правила. В однофазных генераторах число полюсов совпадает с количеством магнитов. В трехфазных генераторах соблюдается пропорция 4/3 между магнитами и полюсами, а также соотношение 2/3 между полюсами и катушками. Установка магнитов выполняется перпендикулярно окружности диска. Для их равномерного распределения используется бумажный шаблон. Вначале магниты закрепляются сильным клеем, а потом окончательно фиксируются эпоксидной смолой.


    Если сравнивать однофазные и трехфазные генераторы, то эксплуатационные качества первых будут несколько хуже по сравнению со вторыми. Это связано с высокими амплитудными колебаниями в сети из-за нестабильной отдачи тока. Поэтому в однофазных устройствах возникает вибрация. В трехфазных конструкциях этот недостаток компенсируется нагрузками тока из одной фазы в другую. За счет этого в сети всегда обеспечивается постоянное значение мощности. Из-за вибрации срок эксплуатации однофазных систем значительно ниже, чем у трехфазных. Кроме того, у трехфазных моделей во время работы отсутствует шум.

    Высота мачты составляет примерно 6-12 м. Она устанавливается в центр опалубки и заливается бетоном. Затем на мачту устанавливается готовая конструкция, на которую крепится винт. Крепление самой мачты осуществляется с помощью тросов.

    Лопасти для ветрогенератора

    Эффективность работы ветровых электроустановок во многом зависит от конструкции лопастей. Прежде всего, это их количество и размеры, а также материал, из которого будут изготовлены лопасти для ветрогенератора.


    Факторы, влияющие на конструкцию лопастей:

    • Даже самый слабый ветер сможет привести в движение длинные лопасти. Однако слишком большая длина может привести к замедлению скорости вращения ветряного колеса.
    • Увеличение общего количества лопастей делает ветряное колесо более чутким. То есть, чем больше лопастей, тем лучше запускается вращение. Однако мощность и скорость будут снижаться, что делает подобное устройство непригодным для выработки электроэнергии.
    • Диаметр и скорость вращения ветряного колеса оказывает влияние на уровень шума, создаваемого устройством.

    Количество лопастей должно сочетаться с местом установки всей конструкции. В наиболее оптимальных условиях правильно подобранные лопасти способны обеспечить максимальную отдачу ветрогенератора.

    Прежде всего, нужно заранее определить необходимую мощность и функциональность устройства. Чтобы правильно изготовить ветрогенератор, нужно изучить возможные конструкции, а также климатические условия, в которых он будут эксплуатироваться.

    Кроме общей мощности рекомендуется определить значение выходной мощности, известной еще как пиковая нагрузка. Она представляет собой общее количество приборов и оборудования, которые будут включаться одновременно с работой ветрогенератора. При необходимости увеличить этот показатель, рекомендуется использовать сразу несколько инверторов.

    Ветряной генератор своими руками 24в - 2500ватт

    Зачастую у владельцев частных домов возникает идея о реализации системы резервного электропитания . Наиболее простой и доступный способ — это, естественно, бензиновый или дизельный генератор, однако многие люди обращают свой взгляд на более сложные способы преобразования так называемой даровой энергии (солнечного излучения, энергии текущей воды или ветра) в электричество.

    Каждый из этих способов имеет свои достоинства и недостатки. Если с использованием течения воды (мини-ГЭС) все понятно — это доступно только в непосредственной близости от достаточно быстротекущей реки, то солнечный свет или ветер можно использовать практически везде. Оба этих метода будут иметь и общий минус — если водяная турбина может работать круглосуточно, то или ветрогенератор эффективны только некоторое время, что делает необходимым включение аккумуляторов в структуру домашней электросети.

    Поскольку условия в России (малая длительность светового дня большую часть года, частые осадки) делают применение солнечных батарей неэффективным при их современных стоимости и КПД, наиболее выгодным становится конструирование ветрового генератора . Рассмотрим его принцип действия и возможные варианты конструкции.

    Так как ни одно самодельное устройство не похоже на другое, эта статья — не пошаговая инструкция , а описание базовых основ конструирования ветрогенератора.

    Общий принцип работы

    Основным рабочим органом ветрогенератора являются лопасти, которые и вращает ветер. В зависимости от расположения оси вращения ветрогенераторы делятся на горизонтальные и вертикальные:

    • Горизонтальные ветрогенераторы наиболее широко распространены. Их лопасти имеют конструкцию, аналогичную пропеллеру самолета: в первом приближении это — наклонные относительно плоскости вращения пластины, которые преобразуют часть нагрузки от давления ветра во вращение. Важной особенностью горизонтального ветрогенератора является необходимость обеспечения поворота лопастного узла сообразно направлению ветра, так как максимальная эффективность обеспечивается при перпендикулярности направления ветра к плоскости вращения.
    • Лопасти вертикального ветрогенератора имеют выпукло-вогнутую форму. Так как обтекаемость выпуклой стороны больше, чем вогнутой, такой ветрогенератор вращается всегда в одном направлении независимо от направления ветра, что делает ненужным поворотный механизм в отличие от горизонтальных ветряков. Вместе с тем, за счет того, что в любой момент времени полезную работу выполняет только часть лопастей, а остальные только противодействуют вращению, КПД вертикального ветряка значительно ниже, чем горизонтального : если для трехлопастного горизонтального ветрогенератора этот показатель доходит до 45%, то у вертикального не превысит 25%.

    Поскольку средняя скорость ветров в России невелика, даже большой ветряк большую часть времени будет вращаться достаточно медленно. Для обеспечения достаточной мощности электропитания от должен соединяться с генератором через повышающий редуктор, ременной или шестеренчатый. В горизонтальном ветряке блок лопасти-редуктор-генератор устанавливается на поворотной головке, которая дает им возможность следовать за направлением ветра. Важно учесть, что поворотная головка должна иметь ограничитель, не дающий ей сделать полный оборот, так как иначе проводка от генератора будет оборвана (вариант с использованием контактных шайб, позволяющих головке свободно вращаться, более сложен). Для обеспечения поворота ветрогенератор дополняется направленным вдоль оси вращения рабочим флюгером.

    Наиболее распространенный материал для лопастей — это ПВХ-трубы большого диаметра, разрезаемые вдоль. По краю к ним приклепываются металлические пластины, приваренные к ступице лопастного узла. Чертежи такого рода лопастей наиболее широко распространены в Интернете.

    На видео рассказывается про ветрогенератор, изготовленный своими руками

    Расчет лопастного ветрогенератора

    Так как мы уже выяснили, что горизонтальный ветрогенератор значительно эффективнее, рассмотрим расчет именно его конструкции.

    Энергия ветра может быть определена по формуле
    P=0.6*S*V ³, где S — это площадь круга, описываемого концами лопастей винта (площадь ометания), выраженная в квадратных метрах, а V — расчетная скорость ветра в метрах в секунду. Также нужно учитывать КПД самого ветряка, который для трехлопастной горизонтальной схемы составит в среднем 40%, а также КПД генераторной установки, составляющий на пике токоскоростной характеристики 80% для генератора с возбуждением от постоянных магнитов и 60% — для генератора с обмоткой возбуждения. Еще в среднем 20% мощности израсходует повышающий редуктор (мультипликатор). Таким образом, окончательный расчет радиуса ветряка (то есть длины его лопасти) для заданной мощности генератора на постоянных магнитах выглядит так:
    R=√(P/(0.483*V³
    ))

    Пример: Примем требуемую мощность ветроэлектростанции в 500 Вт, а среднюю скорость ветра — в 2 м/с. Тогда по нашей формуле нам придется использовать лопасти длиной не менее 11 метров. Как видите, даже такая небольшая мощность потребует создания ветрогенератора колоссальных габаритов. Для более-менее рациональных в условиях изготовления своими руками конструкций с длиной лопасти не более полутора метров ветрогенератор сможет выдавать всего лишь 80-90 ватт мощности даже на сильном ветру.

    Недостаточно мощности? На самом деле все несколько иначе, так как на самом деле нагрузку ветрогенератора питают аккумуляторы, ветряк же только заряжает их в меру своих возможностей. Следовательно, мощность ветроустановки определяет периодичность, с которой она сможет осуществлять подачу энергии.


    В Интернете часто можно найти статьи под броскими заголовками наподобие «Ветрогенератор для отопления дома». На самом же деле, как вы уже могли понять из приведенных расчетов, постоянно поддерживать потребляющее несколько киловатт-часов электрическое отопление сможет разве что сеть из не одного десятка самодельных установок.

    Предлагаем посмотреть еще один рассказ про ветрогенератор и его изготовление в домашних условиях

    Выбор генератора

    Наиболее логичным вариантом генераторной установки для самодельного ветряка кажется автомобильный генератор. Такое решение позволяет легко скомпоновать установку, так как генератор уже имеет и крепежные точки, и шкив для ременного мультипликатора. Купить и сам генератор, и запчасти к нему нетрудно. Кроме того, встроенное реле-регулятор позволяет непосредственно подключить его к 12-вольтовой аккумуляторной батарее, а к ней, в свою очередь — инвертор для преобразования постоянного тока в переменный напряжением 220В.

    Но, как уже было сказано выше, КПД генераторов с обмоткой возбуждения достаточно низок, что весьма чувствительно для и без того маломощного ветряного генератора. Второй минус в том, что при разряженном аккумуляторе автомобильный генератор не сможет возбудиться.

    В ряде самодельных конструкций можно встретить тракторные генераторы Г-700 и Г-1000. Их КПД ничуть не больше, полезным отличием являются лишь намагниченность ротора, позволяющая возбудить генератор даже без аккумуляторной батареи, и низкая цена.

    Некоторые авторы при постройке ветрогенераторов пользуются свойством обратимости коллекторных электродвигателей — принудительно вращая их ротор, с него можно снимать постоянный ток. Статор двигателей подобного типа состоит либо из постоянных магнитов, что более предпочтительно в наших целях, либо имеет обмотку. Для применения двигателя в режиме генератора она подключается к автомобильному реле-регулятору, чтобы обеспечить нужное напряжение. Рассмотрим подключение реле-регулятора на примере узла от ВАЗовской классики (оно удобно тем, что не объединено в один блок с щеточным узлом):

    1. Одну из щеток двигателя соедините с корпусом — это будет отрицательный полюс генератора. Сюда же надежно подключите металлический корпус реле-регулятора и клемму «-» аккумулятора.
    2. Клемму 67 реле соедините с одним из выводов статорной обмотки, второй временно с корпусом.
    3. Клемму 15 соедините через выключатель с положительным полюсом аккумулятора (при этом на обмотку подастся ток возбуждения). Придайте ротору вращение в том же направлении, что будет обеспечивать винт ветроустановки, и подключите между свободной щеткой и корпусом вольтметр. Если на щетке обнаружится отрицательный потенциал, поменяйте местами соединения статора с реле-регулятором и массой.

    Основной особенностью подключения генератора постоянного тока к аккумуляторной батарее является необходимость в разделении их полупроводниковым диодом, не дающим аккумулятору разряжаться на обмотку ротора при остановке генератора. В современных автомобильных генераторах эту функцию выполняет трехфазный диодный мост, и мы также можем его использовать, параллельно соединив его фазы для уменьшения падения напряжения на нем.

    Наибольшую же мощность можно снять с генератора, ротор которого состоит из неодимовых магнитов. Распространены конструкции на основе автомобильной ступицы с тормозным диском, по краю которого закрепляются мощные магниты. На минимальном расстоянии от них располагается статор с однофазной или трехфазной обмоткой.

    Такой генератор хорош многим: он возбуждается уже при низких оборотах даже при севшем аккумуляторе, не требует обслуживания щеточного узла. Но при этом его выходное напряжение невозможно отрегулировать, так как оно зависит только от частоты вращения. с генератором на неодимовых магнитах потребует подключения его к дополнительному инвертору для обеспечения зарядки аккумуляторной батареи в большом диапазоне скоростей ветра. Также это устройство часто называется контроллером заряда батарей.


    Существует несколько различных вариантов реализации контроллера в зависимости от конкретного решения конструкции генератора. Так как у подобных самоделок большой разброс параметров, приведенную схему стоит рассматривать как иллюстрацию общего принципа устройства контроллера, а не как обязательное решение.


    Как видно, эта схема рассчитана на использование в качестве генератора коллекторного электродвигателя. Если же вы использовали переменного тока, добавьте диодный мост на его выход .

    Напряжение с генератора через контрольный узел, состоящий из вольтметра и амперметра, подается на вход двух импульсных стабилизаторов . Зарядку аккумулятора осуществляет блок 2, в то время как задача блока 1 — защита от ухода генератора в разнос при сильном ветре и малом потреблнеии тока нагрузкой: при превышении напряжением порога, задаваемого движком потенциометра R3, блок 1 начинает подавать напряжение на подключенный к его выходу мощный нагрузочный резистор, о чем сообщает загорающийся светодиод LED2.

    Нагрузка, не требующая точной стабилизации напряжения (например, низковольтные лампы накаливания), подключаются в обход стабилизатора к выводу диода D2 .

    Расчет мультипликатора

    Генераторная установка имеет наклонную токоскоростную характеристику: с ростом оборотов ротора увеличивается максимальная отдаваемая им мощность. Следовательно, чтобы обеспечить наибольшую эффективность тихоходного ветрогенератора, нам понадобится мультипликатор с большим коэффициентом повышения.

    Для самодельной конструкции наиболее оптимальное решение — это ременной мультипликатор: он прост в изготовлении и требует минимума станочных работ. Коэффициент повышения оборотов у него будет равен отношению диаметра ведущего шкива, связанного с осью винта, к диаметру ведомого шкива генератора. При необходимости передаточное число будет легко скорректировать заменой одного из шкивов.

    При проектировании мультипликатора нужно учитывать как средние обороты лопастного узла, так и токоскоростную характеристику генератора. Если мы используем серийный автомобильный генератор, то ее без труда можно найти в Интернете, с самодельными же конструкциями, скорее всего, придется идти методом проб и ошибок.

    Для примера возьмем распространенный тракторный генератор, о котором уже писали выше.

    Взяв расчетную мощность нашей ветроустановки в 90 ватт, найдем точку на графике, соответствующую выходу генератора на эту мощность. При номинальном напряжении 14 В нам потребуется токоотдача не менее 6,5 А — согласно графику, это произойдет при оборотах чуть выше 1000 об/мин. Пусть винт нашей конструкции вращается ветром со скоростью 60 об/мин (ветер средней силы). Значит, нам потребуется как минимум двадцатикратное соотношение диаметров шкивов — для 70-миллиметрового шкива генератора шкив ветряка должен будет иметь диаметр почти полтора метра, что неприемлемо. Это недвусмысленно намекает, насколько мала эффективность ветрогенераторов такого типа — без сложного многоступенчатого редуктора, который сам по себе приведет к большим потерям мощности, вывести автомобильный генератор на рабочий режим практически невозможно.

    Для сравнения, посмотрим на характеристики генераторов, используемых в ветрогенераторах промышленного изготовления. Например, генератор на постоянных магнитах ГВУ1000, по конструкции аналогичный описанной выше самоделке из автомобильного тормозного диска, всего при 200 оборотах в минуту выдает мощность в 1 киловатт. С другой стороны, обратной стороной является его значительные вес (34 кг) и цена (почти 70 тысяч рублей).

    Мачта

    Она не только обеспечивает безопасность эксплуатации ветряка (нижняя точка круга, описываемого лопастями, должна быть не ближе 2 метров к земле), но и позволяет ему максимально эффективно использовать энергию ветра, поток которого вблизи от земли становится более турбулентным.

    Большая высота приводит к низкой жесткости мачты ветрогенератора и делает ее прочностной расчет достаточно сложным не только для мастера-любителя, но и для инженера. Можно перечислить лишь основные моменты:

    • Размещайте мачту возможно дальше от дома и деревьев, затеняющих воздушный поток. Кроме того, при сильном ветре возможно падение ветрогенератора на здание либо его повреждение деревьями;
    • Оптимальная конструкция мачты — это ажурная сварная ферма наподобие вышек электропередач, но в изготовлении она сложна и дорога. Простейший, но достаточно эффективный вариант — это несколько параллельных труб диаметром 80-100 мм, сваренных короткими швами между собой и забетонированных на глубину не менее метра в земле. Конструкцию из одной трубы крайне желательно усилить тросовыми растяжками, которые также крепятся к залитым в бетон опорам.
    • Для упрощения обслуживания ветряка его мачту можно сделать переломной: в этом случае при ослаблении растяжки, идущей в направлении перелома, мачту можно будет наклонить к земле.

    Рассказ об очень простом ветрогенераторе из домашнего вентилятора

    Дополнительное электрооборудование

    Как уже было сказано выше, неотъемлемой частью ветряной электростанции является аккумулятор, берущий на себя питание потребителей. при его выборе нужно помнить, что чем больше его емкость, тем дольше он сможет поддерживать напряжение в сети, но при этом и дольше будет заряжаться. Приблизительное время работы можно определить как то время, за которое исчерпается половина емкости аккумулятора (после этого падение напряжения станет уже ощутимым, кроме того, глубокий разряд снижает ресурс свинцово-кислотных батарей).

    Пример: Так, аккумулятор емкостью 65 А*ч условно сможет отдавать в нагрузку 30-35 ампер-часов энергии. Много это или мало? Обычная лампа освещения мощностью 60 ватт потребует, с учетом наличия инвертора, преобразующего 12 В постоянного тока в 220 В переменного и имеющего собственный КПД в пределах 70%, тока в 7 ампер — это чуть больше четырех часов работы. Восстанавливать же растраченную энергию наш ветряк с условной мощностью 90 ватт даже в лучшем случае, при постоянном сильном ветре, будет не менее пяти часов. Как вы видите, при использовании ветрогенератора исключительно как электричество в вашем доме будет доступным лишь на несколько часов в день.

    Вторым узлом системы электроснабжения становится инвертор. В нашем случае можно использовать как готовый автомобильный, так и извлеченный из источника бесперебойного питания. В любом случае важно не перегружать его потреблением тока, учитывая, что реальная эксплуатационная мощность его в 1,2-1,5 раза меньше указываемой максимальной мощности.

    Как вы можете видеть, привлекательность использования даровой энергии упирается во многочисленные ограничения, и даже единственный эффективный в средней полосе России вариант — ветрогенератор — неспособен обеспечивать длительную автономность.

    Но вместе с тем эта идея неплоха и как источник аварийного электропитания и, особенно, как конструкторская задача — удовольствие от создания своими руками ветрогенераторной установки может в разы превосходить ее мощность.