23.02.2019

Давление. Виды давления. Гидростатическое давление: атмосферное, избыточное, вакууметрическое, абсолютное


Числовое значение давления определяется не только принятой системой единиц, но и выбранным началом отсчета. Исторически сложились три системы отсчета давления: абсолютная, избыточная и вакуумметрическая (рис.2.2).

Рис. 2.2. Шкалы давления. Связь между давлением

абсолютным, избыточным и вакуумом

Абсолютное давление отсчитывается от абсолютного нуля (рис. 2.2). В этой системе атмосферное давление. Следовательно, абсолютное давление равно

Абсолютное давление всегда является величиной положительной.

Избыточное давление отсчитывается от атмосферного давления, т.е. от условного нуля. Чтобы перейти от абсолютного к избыточному давлению необходимо вычесть из абсолютного давления атмосферное, которое в приближенных расчетах можно принять равным 1ат :

Иногда избыточное давление называют манометрическим.

Вакуумметрическим давлением или вакуумом называется недостаток давления до атмосферного

Избыточное давление показывает либо избыток над атмосферным, либо недостаток до атмосферного. Ясно, что вакуум может быть представлен как отрицательное избыточное давление

Как видно, эти три шкалы давления различаются между собой либо началом, либо направлением отсчета, хотя сам отсчет может вестись при этом в одной и той же системе единиц. Если давление определяется в технических атмосферах, то к обозначению единицы давления (ат ) приписывается ещё одна буква, в зависимости от того, какое давление принято за «нулевое» и в каком направлении ведется положительный отсчет.

Например:

Абсолютное давление равно 1,5 кг/см 2 ;

Избыточное давление равно 0,5 кг/см 2 ;

Вакуум составляет 0,1 кг/см 2 .

Чаще всего инженера интересует не абсолютное давление, а его отличие от атмосферного, поскольку стенки конструкций (бака, трубопровода и т.п.) обычно испытывают действие разности этих давлений. Поэтому в большинстве случаев приборы для измерения давления (манометры, вакуумметры) показывают непосредственно избыточное (манометрическое) давление или вакуум.

Единицы давления. Как следует из самого определения давления, его размерность совпадает с размерностью напряжения, т.е. представляет собой размерность силы, отнесенную к размерности площади.

За единицу давления в Международной системе единиц (СИ) принят паскаль - давление, вызываемое силой, равномерно распределенной по нормальной к ней поверхности площадью, т.е.. Наряду с этой единицей давления применяют укрупненные единицы: килопаскаль (кПа) и мегапаскаль (МПа):

В технике в настоящее время в некоторых случаях продолжают применять также техническую МКГСС (метр, килограмм-сила, секунда, а) и физическую СГС (сантиметр, грамм, секунда) системы единиц. Используются также внесистемные единицы - техническую атмосферу и бар:

Не следует также смешивать техническую атмосферу с физической, которая все ещё имеет некоторое распространение в качестве единицы давления:

2.1.3. Свойства гидростатического давления

Гидростатическое давление обладает двумя основными свойствами.

1-ое свойство. Силы гидростатического давления в покоящейся жидкости всегда направлены внутрь по нормали к площадке действия, т.е. являются сжимающими.

Это свойство доказывается от противного. Если предположить, что силы направлены по нормали наружу, то это равносильно появлению в жидкости растягивающих напряжений, которых она воспринимать не может (это вытекает из свойств жидкости).

2-ое свойство . Величина гидростатического давления в любой точке жидкости по всем на­правлениям одинаково, т.е. не зависит от ориентации в пространстве площадки, на которую оно действует

где - гидростатические давления по направлению координатных осей;

То же по произвольному направлению .

Для доказательства этого свойства выделим в неподвижной жидкости элементарный объем в форме тетраэдра с ребрами, параллельными координатным осям и соответственно равными , и (рис. 2.3).

Рис. 2.3. Схема для доказательства свойства

о независимости гидростатического давления от направления

Введем обозначения: - гидростатическое давление, действующее на грань, нормальную к оси ;

Давление на грань, нормальную к оси ;

Давление на грань, нормальную к оси ;

Давление, действующее на наклонную грань;

Площадь этой грани;

Плотность жидкости.

Запишем условия равновесия для тетраэдра (как для твердого тела) в виде трех уравнений проекций сил и трех уравнений моментов:

При уменьшении в пределе объема тетраэдра до нуля система действующих сил преобразуется в систему сил проходящих через одну точку, и, таким образом, уравнения моментов теряют смысл.

Таким образом, внутри выделенного объема на жидкость действует единичная массовая сила, проекции ускорений которой равны , , и . В гидравлике принято массовые силы относить к единице массы, а так как , то проекция единичной массовой силы численно будет равна ускорению.

где ,,- проекции единичной массовой силы на оси координат;

Масса жидкости;

Ускорение.

Составим уравнение равновесия выделенного объема жидкости в направлении оси , учитывая при этом, что все силы направлены по нормалям к соответствующим площадкам внутрь объема жидкости:

где - проекция силы от гидростатического давления;

Проекция силы от давления ;

Рассмотрим закрытый резервуар, в котором жидкость образует свободную поверхность (рис. 2.4, а ). Подсоединим к боковой поверхности резервуара изогнутую стеклянную трубку, открытую в атмосферу. Если на свободной поверхности действует атмосферное давление (р 0 = р ат), то по закону сообщающихся сосудов для однородной жидкости в резервуаре и в стеклянной трубке поверхности жидкостей будут находиться на одном уровне. По уровню жидкости в стеклянной трубке можно определить значение давления на уровне подсоединения трубки, а также значение давления, действующего на свободной поверхности жидкости. Такая стеклянная трубка носит название пъезометр .

Пъезометр - это прибор жидкостного типа, предназначенный для измерения давления.

а ) б ) в )

Рис. 2.4. Схема к определению давления

Подадим некоторое количество воздуха в закрытый резервуар (рис. 2.4, б ). В этом случае давление на свободной поверхности жидкости превысит атмосферное (р 0 > р ат), уровень жидкости в пъезометре превысит уровень жидкости в резервуаре. Плоскость M N , к которой подсоединён пъезометр, является поверхностью равных давлений, то есть р M = р N . Согласно основному уравнению гидростатики (2.2):

,

,

Из уравнения (2.5) видно, что давление, на которое давление р 0 превышает атмосферное, уравновешивается давлением, создаваемым столбом жидкости (h п – h ) в пъезометре.

Давление, превышающее атмосферное, называют избыточным или манометрическим давлением. Избыточное (манометрическое) давление измеряется механическим прибором – манометром, и не учитывает атмосферное давление. Для случая, изображённого на рис. 2.4, б , манометрическое давление:

.

Давление р 0 из уравнения (2.5) будет равно:

Давление, определяемое с учётом атмосферного, называют абсолютным давлением.

Откачаем некоторое количество воздуха из закрытого резервуара (рис. 2.4. в ), в результате чего уровень жидкости в пъезометре будет ниже уровня жидкости в резервуаре. Составим основное уравнение гидростатики аналогично предыдущему случаю. С учётом того, что р 0 < р ат, получим:

Из уравнения (2.6) видно, что недостаток давления до атмосферного уравновешивается весом столба жидкости (h h п) в резервуаре.

Давление, характеризующее недостаток давления до атмосферного, называется вакуумметрическим давлением .

Взаимосвязь между манометрическим, вакуумметрическим и абсолютным давлением изображена на рис. 2.5.

Рис. 2.5. Взаимосвязь между манометрическим, вакуумметрическим



и абсолютным давлением

Существуют две системы отсчёта давления:

Если за начало отсчёта принимается атмосферное давление, то в этом случае давление может быть как положительным (избыточным), так и отрицательным (вакуумметрическим). Весовое давление столба жидкости p = ρ gh является избыточным;

Если за начало отсчёта принимается абсолютный ноль давлений, то в этом случае давление называют абсолютным, и оно может быть только положительным.

Высота столба жидкости в пъезометре h п называется пъезометрической высотой , с помощью которой определяют избыточное давление в точке подключения пъезометра:

В гидравлике удельную энергию жидкости называют напором . Так как напор измеряют в метрах, его называют высотой – геометрическая высота, пъезометрическая высота. В случае действия вакуумметрического давления разницу между уровнем свободной поверхности жидкости и уровнем жидкости в пъезометре называют вакуумметрической высотой.

В технических приложениях давление обычно называют абсолютным давлением . Кроме того, вводят так называемое избыточное давление и вакуум, определение которых осуществляется по отношению к атмосферному давлению.

Если давление больше атмосферного (), то превышение давления над атмосферным называют избыточным давлением:

;

если давление меньше атмосферного, то недостаток давления до атмосферного называют вакуумом (или вакууметрическим давлением):

.

Очевидно, что обе эти величины – положительные. Например, если говорят: избыточное давление равно 2 атм ., то это означает, что абсолютное давление равно . Если говорят, что в сосуде вакуум составляет 0,3 атм ., то это означает, что абсолютное давление в сосуде равно и т.д.

ЖИДКОСТИ. ГИДРОСТАТИКА

Физические свойства жидкостей

Капельные жидкости – это сложные системы, обладающие многими физико-химическими свойствами. Нефтяная и нефтехимическая промышленность, помимо воды, имеет дело с такими жидкостями, как сырая нефть, светлые нефтепродукты (бензины, керосины, дизельные и печные топлива и т.п.), различные масла, а также с другими жидкостями, являющимися продуктами переработки нефти. Остановимся, прежде всего, на тех свойствах жидкости, которые важны для изучения гидравлических проблем транспорта и хранения нефти и нефтепродуктов.

Плотность жидкостей. Свойства сжимаемости

И теплового расширения

Каждая жидкость при некоторых стандартных условиях (например, атмосферном давлении и температуре 20 0 С) имеет номинальную плотность . Например, номинальная плотность пресной воды составляет 1000 кг/м 3 , плотность ртути равна 13590 кг/м 3 , сырых нефтей 840-890 кг/м 3 , бензинов 730-750 кг/м 3 , дизельных топлив 840-860 кг/м 3 . В то же время плотность воздуха составляет кг/м 3 , а природного газа кг/м 3 .

Однако при изменении давления и температуры плотность жидкости изменяется: как правило, при увеличении давления или уменьшении температуры она увеличивается, а при уменьшении давления или увеличении температуры она уменьшается.

Упругие жидкости

Изменения плотности капельных жидкостей обычно невелики по сравнению с номинальным значением (), поэтому для описания свойств их сжимаемости в ряде случаев используют модель упругой жидкости. В этой модели плотность жидкости зависит от давления согласно формуле

в которой коэффициент называют коэффициентом сжимаемости ; плотность жидкости при номинальном давлении . Эта формула показывает, что превышение давления над ведет к увеличению плотности жидкости, в обратном случае – к уменьшению.

Используется также модуль упругости К (Па ), который равен . В этом случае формула (2.1) записывается, как

. (2.2)

Средние значения модуля упругости для воды Па , нефти и нефтепродуктов Па . Отсюда следует, что отклонения плотности жидкости от номинальной плотности крайне незначительны. Например, если МПа ( атм.), то для жидкости с кг /м 3 отклонение составит 2,8 кг /м 3 .

Жидкости с тепловым расширением

То, что различные среды при нагревании расширяются, а при охлаждении сжимаются, учитываются в модели жидкости с объемным расширением. В этой модели плотность есть функция от температуры , так что :

в которой () - коэффициент объемного расширения, а и номинальные плотность и температура жидкости. Для воды, нефти и нефтепродуктов значения коэффициента приведены в таблице 2.1.

Из формулы (2.3) следует, в частности, что при нагревании, т.е. в тех случаях, когда , жидкость расширяется; а в тех случаях, когда , жидкость сжимается.

Таблица 2.1

Коэффициент объемного расширения

Плотность , кг/м 3 Коэффициент , 1/ 0 C
700-719 0,001225
720-739 0,001183
740-759 0,001118
760-779 0,001054
780-799 0,000995
800-819 0,000937
820-839 0,000882
840-859 0,000831
860-880 0,000782

Пример 1 . Плотность бензина при 20 0 С равна 745 кг/м 3 . Какова плотность этого же бензина при температуре 10 0 С?

Решение. Используя формулу (2.3) и таблицу 1, имеем:

кг/м 3 , т.е. эта плотность увеличилась на 8,3 кг/м 3 .

Используется также модель жидкости, учитывающей как барическое, так и тепловое расширение. В этой модели , причем справедливо следующее уравнение состояния:

. (2.4)

Пример 2 . Плотность бензина при 20 0 С и атмосферном давлении (МПа ) равна 745 кг/м 3 . Какова плотность этого же бензина при температуре 10 0 С и давлении 6,5 МПа?

Решение. Используя формулу (2.4) и таблицу 2.1, имеем:

кг /м 3 , т.е. эта плотность увеличилась на 12 кг /м 3 .

Несжимаемая жидкость

В тех случаях, когда изменениями плотности у частиц жидкости можно пренебречь, используют модель так называемой несжимаемой жидкости. Плотность каждой частицы такой гипотетической жидкости остается постоянной в течение всего времени движения (иными словами, полная производная ), хотя она может быть и разной у разных частиц (как, например, у водонефтяных эмульсий). Если же несжимаемая жидкость однородна, то

Подчеркнем, что несжимаемая жидкость представляет собой лишь модель , которую можно использовать в тех случаях, когда изменения плотности жидкости много меньше значения самой плотности , так что .

Вязкость жидкости

Если слои жидкости движутся друг относительно друга, то между ними, возникают силы трения. Эти силы называют силами вязкого трения,а свойство сопротивления относительному движению слоев - вязкостью жидкости.

Пусть, например, слои жидкости движутся так, как показано на рис. 2.1.

Рис. 2.1. К определению вязкого трения

Здесь распределение скоростей в потоке, а направление нормали к площадке . Верхние слои движутся быстрее нижних, поэтому со стороны первых действует сила трения, увлекающая вторые вперед по ходу течения, а со стороны нижних слоев действует сила трения, тормозящая движение верхних слоев. Величина - это x -составляющая силы трения между слоями жидкости, разделенными площадкой с нормалью y , рассчитанная на единицу площади.

Если ввести в рассмотрение производную , то она будет характеризовать скорость сдвига, т.е. разность скоростей слоев жидкости, рассчитанную на единицу расстояния между ними. Оказывается, что для многих жидкостей справедлив закон, согласно которому касательное напряжение между слоями пропорционально разности скоростей этих слоев, рассчитанной на единицу расстояния между ними :

Смысл этого закона понятен: чем больше относительная скорость слоев жидкости (скорость сдвига), тем больше сила трения между слоями.

Жидкость, для которой справедлив закон (2.5) называют ньютоновской вязкой жидкостью . Многие капельные жидкости удовлетворяют этому закону, однако, входящий в него коэффициент пропорциональности оказывается различным для различных жидкостей. Говорят, что такие жидкости являются ньютоновскими, но с разной вязкостью.

Коэффициент пропорциональности , входящий в закон (2.5), называют коэффициентом динамической вязкости.

Размерность этого коэффициента такова

.

В системе СИ измеряется в и выражается в Пуазах (Пз ). Эта единица введена в честь Жана Луи Мари Пуазейля , (1799-1869) – выдающегося французского врача и физика, много сделавшего для изучения движения жидкости (в частности, крови) в трубе.

Пуаз определяется так: 1 Пз = 0,1 . Чтобы составить представление о величине 1 Пз , заметим, что коэффициент динамической вязкости воды в сто раз меньше 1 Пз, т.е. 0,01 Пз = 0,001 = 1 санти Пуаз. Вязкость бензинов составляет 0,4-0,5 Пз, дизельных топлив 4 – 8 Пз , нефти – 5-30 Пз и больше.

Для описания вязких свойств жидкости важен также другой коэффициент, являющийся отношением коэффициента динамической вязкости к плотности жидкости, а именно . Этот коэффициент обозначают и называют коэффициентом кинематической вязкости .

Размерность коэффициента кинематической вязкости такова:

= .

В системе СИ измеряется м 2 /с и выражается Стоксами (Джордж Габриель Стокс (1819-1903) – выдающийся английский математик, физик и гидромеханик):

1 Ст = 10 -4 м 2 /с.

При таком определении кинематической вязкости для воды имеем:

Иными словами, единицы измерения для динамической и кинематической вязкости выбраны таким образом, чтобы и та, и другая для воды была бы равна 0,01 единицы: 1 сПз в первом случае и 1 сСт – во втором.

Для справки укажем, что кинематическая вязкость бензина составляет примерно 0,6 сСт; дизельного топлива - сСт; маловязкой нефти - сСт и т.д.

Зависимость вязкости от температуры . Вязкость многих жидкостей - воды, нефти и почти всех нефтепродуктов - зависит от температуры. При повышении температуры вязкость уменьшается, при понижении - увеличивается. Для расчета зависимости вязкости, например, кинематической от температуры используются различные формулы, в том числе и формула О.Рейнольдса - П.А.Филонова

Решение. По формуле (2.7) рассчитываем коэффициент : . По формуле (2.6) находим искомую вязкость: сСт.

Идеальная жидкость

Если силы трения между слоями жидкости много меньше нормальных (сдавливающих) сил, то вводят модель так называемой идеальной жидкости . В этой модели считается, что касательные силы трения между частицами, разделенными площадкой, отсутствуют и при течении жидкости, а не только в состоянии покоя(см. в п. 1.9 определение жидкости). Такая схематизация жидкости оказывается весьма полезной в тех случаях, когда касательные составляющие сил взаимодействия (силы трения) много меньше их нормальных составляющих (сил давления). В других же случаях, когда силы трения сопоставимы с силами давления или даже превосходят их, модель идеальной жидкости оказывается неприменимой.

Поскольку в идеальной жидкости существуют только нормальные напряжения, то вектор напряжения на любой площадке с нормалью перпендикулярен этой площадке . Повторяя построения п.1.9, можно заключить, что в идеальной жидкости все нормальные напряжения равны по величине и отрицательны (). Следовательно, в идеальной жидкости существует параметр , называемый давлением:, , а матрица напряжений имеет вид:

. (2.8)

Давление -- единица силы, действующая перпендикулярно на единицу площади.

Абсолютным называют давление, создаваемое на тело отдельно взятым газом без учета других атмосферных газов. Измеряют его Па (паскалях). Абсолютное давление представляет собой сумму атмосферного и избыточного давлений.

Избыточным давлением называют положительную разность между измеряемым и атмосферным давлением.

Рис. 2.

Рассмотрим условия равновесия для открытого сосуда, заполненного жидкостью, к которому в точке А присоединена открытая сверху трубка (рис. 2). Под действием весового или избыточного давления сЧgЧh, жидкость поднимается в трубке на высоту h p . Указанная трубка называется пьезометром, а высота h p - пьезометрической высотой. Представим основное уравнение гидростатики относительно плоскости, проходящей через точку А. Давление в точке А со стороны сосуда определяется как:

со стороны пьезометра:

то есть пьезометрическая высота показывает величину избыточного давления в точке, где присоединен пьезометр в линейных единицах размерности.

Рис. 3.

Рассмотрим условия равновесия теперь для закрытого сосуда, где давление на свободной поверхности Р 0 больше атмосферного давления Р атм (Рис. 3.)

Под действием давления Р 0 большего Р атм и весового давления сЧgЧh жидкость поднимается в пьезометре на высоту h p большую, чем в случае открытого сосуда.

Давление в точке А со стороны сосуда:

со стороны открытого пьезометра:

из этого равенства получаем выражение для h p:

Анализируя полученное выражение, устанавливаем, что и в этом случае пьезометрическая высота соответствует величине избыточного давления в точке присоединения пьезометра. В данном случае избыточное давление состоит из двух слагаемых: внешнего избыточного давления на свободной поверхности Р" 0 изб = Р 0 - Р атм и весового давления сЧgЧh

Избыточное давление может быть и отрицательной величиной, называемой вакуумом. Так, во всасывающих патрубках центробежных насосов, в потоке жидкости при истечении из цилиндрических насадков, в вакуум - котлах в жидкости образуются области с давлением ниже атмосферного, т.е. области вакуума. В этом случае:


Рис. 4.

Вакуум - это недостаток давления до атмосферного. Пусть в резервуаре 1 (рис. 4) абсолютное давление меньше атмосферного (например, откачана часть воздуха при помощи вакуум- насоса). В резервуаре 2 находится жидкость, и резервуары соединены изогнутой трубкой 3. На поверхности жидкости в резервуаре 2 действует атмосферное давление. Так как в резервуаре 1 давление меньше атмосферного то жидкость поднимается в трубке 3 на какую-то высоту, которая называется вакуумметрической высотой и обозначается. Величина может быть определена из условия равновесия:

Максимальное значение вакуумметрического давления составляет 98,1кПа или 10 м.в.ст., но практически давление в жидкости не может быть меньше давления паров насыщения и равно 7-8 м.в.ст.