28.02.2019

Конструкции котлов. Устройство газовых и жидкотопливных водогрейных котлов


Цилиндрическая часть котла является продолжением топки и состоит из нескольких (обычно из трех) склепанных или сваренных между собой стальных барабанов. В ней размещают дымогарные и жаровые трубы. Материалом для барабанов служит котельная сталь. Толщина листов до 20 мм. Соединяются барабаны между собой несколькими способами:

а) ступенчатым, причем диаметр среднего барабана меньше диаметров двух крайних;

б) телескопическим, когда барабаны последовательно вставлены один в другой;

в) сварным — барабаны имеют один диаметр и приставляются встык один к другому (рис. 14).

В передней части цилиндрической части установлена передняя трубная решетка, которая предназначена для укрепления в ней передних концов дымогарных и жаровых труб. На современных паровозах передняя трубная решетка представляет собой диск, который вырезан из котельного железа. Передняя решетка крепится в барабане заклепочным или сварным швом (рис. 15).

На втором барабане установлен паровой колпак. Горячие газы из огневой коробки по трубам протекают в дымовую камеру, отдавая при этом часть своего тепла воде, которая омывает трубы снаружи, и пару, протекающему по элементам пароперегревателя.

Пар, который образовался в котле, поднимается в верхнее не заполненное водой паровое пространство и паровой колпак. Высота парового пространства составляет 1/5 —1/7 диаметра котла. Чем больше паровое пространство, тем равномернее происходит процесс отбора пара из котла и спокойнее парообразование, следовательно, суше отбираемый пар.

Теплопередача в цилиндрической части котла менее интенсивна, чем в огневой коробке. Это связано с тем, что разность температур газов в топке и воды в котле выше, чем в трубчатой части. В топке тепло передается лучеиспусканием, а в трубчатой части за счет конвекции, т. е. соприкосновения горячих газов со стенками труб.

Дымогарные (рис. 16) и жаровые трубы служат для отвода продуктов сгорания из топки паровоза и одновременно образуют поверхность нагрева котла. Жаровые трубы служат также для размещения в них элементов пароперегревателя. Дымогарные и жаровые трубы изготовляют цельнотянутыми, бесшовными из малоуглеродистой стали. Для укрепления труб в решетках котла сверлят цилиндрические отверстия. При этом в передних решетках диаметры отверстий делают на 3—4 мм больше наружного диаметра труб, чем облегчается постановка и удаление труб во время ремонта. В задних же трубных решетках отверстия для труб делают меньше их наружного диаметра: у дымогарных—на 9—11 мм, а у жаровых — на 9—20 мм.

Перед постановкой труб в котел передние концы их раздают, а задние обжимают до размеров отверстий в трубных решетках. Обжатие задних концов труб улучшает циркуляцию воды у поверхности задней трубной решетки и позволяет лучше очищать ее от накипи при промывках котла. Раздача и обжатие отверстий для дымогарных и жаровых труб в передней и задней трубных решетках производятся с таким расчетом, чтобы трубы в котле расходились веером в сторону передней решетки вверх и в стороны от вертикальной оси. Это необходимо для того, чтобы обеспечить более свободное размещение труб в котле и улучшить выход газов из огневой коробки. Кроме того, из-за большего диаметра труб в передней части для их расположения требуется больше места.

Перед постановкой в котел дымогарные и жаровые трубы со стороны задней решетки обжимают двухступенчатым способом, а со стороны передней решетки раздают. Подробно о приемах обжатия, раздачи и применяемых инструментах будет сказано в разделе о ремонте паровозного котла.

Для лучшего укрепления концов дымогарных и жаровых труб в отверстия задней решетки ставят медные прокладные кольца и развальцовывают их, потом в отверстия вводят концы труб, которые также развальцовывают (рис. 17).

Затем концы труб, выходящие из решетки, отгибают на 45° и отбортовывают. Далее борты труб приваривают к решетке (рис. 18), когда котел наполнен подогретой до t = 40-60° С водой.

В передней решетке трубы устанавливают без медных прокладных колец, не отбортовывают и не обваривают; выступающие передние концы дымогарных и жаровых труб развальцовывают и отгибают на конце.

Дымогарные трубы на большинстве современных паровозов располагают в шахматном порядке по вершинам ромба вертикальными рядами, кроме того, их размещают между рядами жаровых труб и по краям решетки.

Паровой колпак (рис. 19) представляет собой резервуар, который является наивысшей точкой парового пространства, служит сборником наиболее сухого пара и установлен на втором барабане цилиндрической части котла. Из парового колпака пар отбирается в паровую машину. На паровозах Эм, паровой колпак изготовлялся клепаным, на паровозах, Э р изготовлен штампованным на прессе из цельного листа котельной стали толщиной от 15 до 20 мм. Сверху паровой колпак закрывают крышкой, которая ставится на медном прокладном кольце и укрепляется с помощью шпилек и гаек.

В целях уменьшения потерь от внешнего охлаждения паровозный котел, за исключением дымовой коробки, покрыт слоем теплоизоляции. Для изоляции паровозного котла применяют асбест, диатомит и известь, которые обладают низкой теплотворной способностью. Теплоизоляционный материал делают в виде плит толщиной от 40 до 60 мм. Крепят плиты к котлу с помощью проволочного каркаса, а зазоры между решетками заделывают вулкани-товой обмазкой.

Перед покрытием изоляционным материалом поверхность котла окрашивают. На наружную поверхность топки сначала наносят асбестовую подмазку, а затем кладут вулканитовые асбоцементные плиты. В местах, где нельзя уложить плиты, накладывают слой изоляционной обмазки при давлении пара в котле 0,2— 0,3 МПа.

Поверх изоляционного слоя паровозный котел покрывается обшивкой из листового железа толщиной до 1,5 мм. Обшивка котла защищает изоляционный слой от повреждения. Крепят обшивку стойками, приваренными к стенкам котла, а затем поясами из полосового железа и винтами.


Дымовая коробка (рис. 20) предназначена для размещения в ней конуса, паровпускных и паровыпускных труб, искрогасительтелных приборов, коллектора, пароперегревателя и сифона, а также является камерой, где образуется разрежение, необходимое для создания притока воздуха к колосниковой решетке и для интенсивного сгорания топлива.

Размеры дымовой коробки должны быть достаточными для размещения указанных элементов и, кроме того, оставался бы необходимый свободный объем для прохода газов и создания равномерной тяги.

Дымовая коробка —это сварная или клепаная конструкция и состоит из двух листов: верхнего толщиной 13 мм и нижнего толщиной 17 мм, образующих цилиндрический барабан. Нижняя часть дымовой коробки изготовлена из более толстых листов для придания опорной части котла прочности и жесткости. Для предупреждения коробления и прогорания нижнего листа дымовой коробки от скопления внизу ее изгари к нему приклепывается или приваривается предохранительный лист толщиной до 20 мм.

Спереди дымовая коробка закрыта фронтонным листом или передней стенкой, в которой имеется дверца диаметром до 1500 мм для производства текущего ремонта и осмотра размещенного в нем оборудования.

Для очистки дымовой коробки от изгари внизу устроена мусороочистительная труба 16 диаметром 180 мм с задвижкой, заключенной между фланцами трубы.

Дымовая коробка паровозов Л, Е а,м, Э р оборудована самоочищающимся искрогасительным устройством, где отводящие из дымогарных и жаровых труб газы, ударяясь о вертикальный отражательный щит, создают вихревое движение и, проходя через искрогасительную сетку, направляются в дымовую трубу. Крупные частицы изгари отбиваются от сетки и подвергаются дальнейшему размельчению в общем потоке газов, в результате чего поток газов как бы выметает мелкие частицы изгари.

Дымовая труба 5 установлена наверху дымовой коробки и служит для отвода продуктов сгорания и отработавшего пара в атмосферу.

Нижняя часть трубы, которая расположена в дымовой коробке, соединяется с расширяющимся книзу раструбом 3 для направления струн отработавшего пара и продуктов сгорания топлива. В барабане дымовой коробки предусмотрены специальные вырезы для установки дымовой трубы, конуса, паровпускных и паровыпускных труб.

Объем дымовой коробки влияет на пульсацию газов при выхлопах пара из конуса: чем больше объем, тем меньше пульсация, тем более равномерное горение топлива.

Дымовая коробка соединяется призониыми болтами с седлообразным фланцем цилиндрового блока и служит жестким креплением котла с рамой паровоза.

В дымовой коробке создается искусственная тяга газов за счет выпуска отработавшего пара в паровой машине через конус и дымовую трубу, поэтому герметичность камеры имеет исключительно важное значение.

Разгерметизация дымовой коробки определяется следующим образом: открывают сифон на полную мощность и с помощью факела обходят места возможного подсоса воздуха через неплотности. Такие места отмечают мелом и при ремонте паровоза устраняют с помощью заварки и замены неисправных болтов и деталей. Для герметизации большой дверцы между ней и обвязочным угольником дымовой коробки прокладывают асбестовый картон. Чтобы не было подсоса наружного воздуха в дымовую коробку, неплотности между парорабочими трубами и кромками отверстий в дымовой камере уплотняют стальными заделками с асбестовыми прокладками.

Плотность соединений паровпускных труб и элементов пароперегревателя с коллектором проверяют на горячем паровозе пуском пара, так как пропуск его ухудшает разрежение в дымовой коробке. Хорошая герметичность дымовой коробки способствует интенсивному горению топлива, экономному расходованию его и высокой паропроизводительности котла паровоза.

Устройство паровых котлов


К атегория:

Общие сведения о кранах и котлах

Устройство паровых котлов


На краны устанавливают паровые котлы исключительно вертикального типа с дымогарными или кипятильными трубами. По производительности эти котлы могут быть отнесены к группе котлов малой мощности. На рис. 6 изображен паровой вертикальный с дымогарными трубами котел, устанавливаемый на кране ПК-ЦУМЗ-15.

Рис. 6. Котел с дымогарными трубами крана ПК-ЦУМЗ-15:
А -топка; В -водяное пространство; В -паровое пространство; Г-расширенные проходы между трубами; Д -шуровочнос отверстие; Е - дымовая коробка; 1 - лист топки; г -огневая решетка; 3 -грязевое кольцо; 4 -наружная обечайка; 5 -дымовая решетка; 6 - дымогарные трубы; 7 - шуровочная дверца; S - отражательный лист; 9 - колосники; 10 - промывочный люк; 11 - люк-лаз; 12 - обмуровка котла; 13 - зольник; 14 - искроуловительная сетка; 15 - обечайка шуровочного отверстия; 16 - дутьевое устройство; 17 - контрольная пробка; 18 - рычаг управления колосниками; 19 - лапа котла



-

Аналогичного типа котлы, имеющие лишь другие данные и размеры, установлены на кранах ПК-6.

Основными частями этого котла являются: топка, в которой происходит сгорание топлива; цилиндрическая часть котла, образующая водяное и паровое пространства, где испаряется вода, превращаясь в пар; дымовая камера, куда направляются газы из дымогарных труб и из которой через дымовую трубу они выходят в атмосферу.

Топка котла образуется из топочного листа, свальцованного в цилиндрический барабан, и огневой решетки. Топочный лист и огневая решетка сделаны из листовой топочной стали марки 15К.

Огневая решетка изготовлена штамповкой и представляет собой диск с отогнутыми вниз краями, соединенными с топочным листом.

Цилиндрическую часть котла образует свальцованный в барабан котельный лист из стали марки 20К. Кромки цилиндрических барабанов, решеток и элементов котла соединены между собой в стык при сварном соединении.

Рис. 7. Промывочный люк

Барабан цилиндрической части котла имеет несколько больший диаметр, чем топка, благодаря чему топка, входя в барабан, образует нижнюю часть водяного пространства.

Внизу, между цилиндрическим барабаном котла и топкой, расположено грязевое кольцо, изготовленное из стали марки Ст. 3 прямоугольного сечения; концы кольца свариваются в стык. Посредством этого кольца цилиндрическая часть котла соединена стопкой; котел установлен на поворотной раме крана и укреплен лапами.

Топливо забрасывается в топку на колосниковую решетку через отверстие в наружном листе нижней части котла и в листе самой топки. Кромки этих отверстий отгибаются и в месте стыка свариваются, образуя шуровочное отверстие. Снаружи оно закрыто массивной чугунной литой дверкой.

Отражательный лист, прикрепленный на стойках к внутренней стороне шуровочной дверки, служит для предохранения ее от чрезмерного нагревания.
Для промывки и очистки котла в наружном листе образованы два ряда промывочных люков, устройство которых показано на рис. 7.

Первый ряд люков расположен над грязевым кольцом и служит для очистки водяного пространства от грязи и шлама, оседающих на кольцо, второй ряд размещен на уровне огневой решетки и служит для промывки и очистки ее поверхности.

Чтобы облегчить очистку котла, ремонт и осмотр его внутренней части с противоположной шуровочному отверстию стороны топки несколько выше уровня огневой решетки расположен люк-лаз (рис. 8) размером 300 X 400 мм.

Рис. 8. Люк-лаз:
1 -наружный лист котла; 2 - усиливающее кольцо окна лаза; 3 - прокладка; 4 - крышка лаза; 5-шпилька; 6 - скоба люка

В отверстиях огневой и дымовой решеток закрепляются концы дымогарных труб (рис. 9); в одну из труб ставится контрольная пробка, сплав которой при снижении уровня воды ниже допустимого выплавляется. Дымогарные трубы увеличивают поверхность нагрева. Чем больше труб, тем больше общая поверхность нагрева и тем больше пара будет давать котел. В рассматриваемом котле крана ПК-ЦУМЗ-15 имеются 122 дымогарные трубы.

Для облегчения доступа к дымогарным трубам, расположенным в центральной части котла, их размещают в виде четырех пучков, отделенных между собой двумя взаимно-перпендикулярными расширенными проходами.

Расстояние между центрами двух соседних труб называется шагом расположения труб, а тело решетки между двумя отверстиями под трубы - перемычкой, или мостиком.

Мостики, в особенности в огневой решетке, вследствие больших температурных воздействий являются наиболее уязвимым местом, в котором чаще всего появляются трещины. Поэтому за состоянием мостиков необходимо внимательно следить при эксплуатации котла, а при ремонтах не уменьшать их величину.
Верхний конец труб развальцовывается на больший диаметр, а нижний, наоборот, подкатывается на меньший диаметр, благодаря чему при смене или ремонте они достаточно легко вынимаются кверху даже в том случае, если на их поверхности имеется небольшой слой накипи. Уменьшенного диаметра нижние концы труб, кроме того, можно закрепить в огневой решетке при помощи прокладных колец из мягкой отожженной [красной меди. Такие кольца не только уплотняют соединения, но и предохраняют кромки отверстии решетки от повреждений.

Нижний конец дымогарных труб ставят в отверстие огневой решетки с таким расчетом, чтобы он выступал в сторону огня на 8 мм; после постановки трубы выступающий конец ее отбуртовывают и в обязательном порядке обваривают.

Верхние концы дымогарных труб также выступают за пределы решетки на величину 10-15 мм; их уплотняют развальцовкой изнутри. В верхней части котла установлена дымовая коробка, выполненная из листовой стали толщиной 4-5 мм. Чтобы облегчить доступ к решетке и дымогарным трубам (для очистки), цилиндрическая часть дымовой коробки имеет лючки или отъемный верх.

В нижней части топки установлена колосниковая решетка, на которой лежит слой горящего топлива.

Рис. 9. Дымогарная труба: 1 - труба; 2 - медное прокладное кольцо; 3 - контрольная пробка

Колосниковая решетка состоит из отдельных колосниковых плит, в теле которых сделаны щели для прохода воздуха. Она устанавливается так, чтобы слой горящего топлива располагался несколько выше уровня грязевого кольца. Это позволяет избежать чрезмерного перегрева листа топки в случае скопления на грязевом кольце слоя шлама. От величины живого сечения (сумма всех щелей в колосниках) колосниковой решетки зависит скорость потока воздуха и интенсивность сгорания топлива. Обычно в колосниковых решетках крановых котлов жи-полной площади решетки.

Отдельные плиты колосниковой решетки выполнены подвижными, они поворачиваются на горизонтальных цапфах. Это облегчает очистку решетки от шлака. При помощи рычагов такие плиты занимают наклонное положение, в результате слой шлака разрыхляется, взламывается и сбрасывается в зольник.

Чтобы усилить тягу в дымовой коробке котла, установлен сифон - кольцеобразная трубка с отверстиями, в которые при необходимости подается пар. Кроме того, применяется дутьевое устройство, имеющее вид фасонного рожка с тремя соплами, направленными кверху. Отработавший в паровой машине пар направляется в это устройство и, выходя через сопла, образует вдоль дымовой трубы веерообразный поток, создавая в ней дополнительное разрежение, в результате чего приток воздуха, проходящего через колосниковую решетку, усиливается.

Для уменьшения тепловых потерь цилиндрическая поверхность котла снаружи покрыта (обмурована) слоем (в 30-40 мм) асбестогли-няной массы.

Обмуровочная масса на поверхность котла может быть нанесена горячим способом следующим образом. В котле поднимают давление пара до 3-4 кГ/см2, а затем на поверхность котла наносят слой жидкого асбеста и по мере высыхания - слой асбестоглиняной массы. Обмуровка котла может быть выполнена и холодным способом, в этом случае котел после обмуровки немедленно обшивают кровельным железом и выдерживают его неподвижно в течение не менее суток.

Равномерная толщина слоя обмуровки и укрепление обшивки достигаются тем, что на котел ставится несколько так называемых маячных колец, отстоящих от цилиндрической части котла на величину толщины обмуровочного слоя. К этим маячным кольцам специальными поясами прижимается наружная обшивка котла.

На ряде кранов, в том числе на кранах грузоподъемностью 7,5 т завода им. Январского восстания, установлены котлы с кипятильными трубами.

Котел с кипятильными трубами (рис. 10) состоит из наружного вертикального барабана, закрытого сверху штампованной крышкой. Внутри барабана расположена жаровая труба, верхняя часть которой постепенно суживается и переходит в дымогарную трубу. Для предохранения барабана от быстрого прогорания с внутренней стороны вставлена предохранительная труба, образующая кольцевое газовое пространство. Внутри предохранительной трубы помещен пароперегреватель в виде трубчатого двухрядного змеевика.

Для увеличения поверхности нагрева в жаровую трубу вварены две пары кипятильных труб, расположенных параллельно друг другу. В нижней части жаровая труба соединена с наружным барабаном грязевым кольцом.

Вваренная в наружный барабан и жаровую трубу круглая обечайка образует шуровочное отверстие, закрываемое чугунной литой дверцей с отражательным листом.

Котел посредством опорного грязевого кольца устанавливается и крепится к раме крана, в которой смонтирован литой противовес, являющийся одновременно зольником котла; на этот противовес уложены колосники, образующие колосниковую решетку.

Для устранения перегревов стенок в зоне грязевого кольца на колосники уложена футеровка, выполненная из шамота.

Для осмотра и ремонта котла сделан специальный лаз, а против каждой из кипятильных труб установлены смотровые люки. Около грязевого кольца имеются три малых промывочных люка для очистки и удаления шлама из нижней части котла.

Нижняя часть жаровой трубы и колосниковая решетка образуют топку котла.

Пространство между жаровой трубой и наружным барабаном, а также внутренняя часть кипятильных труб составляют водяной объем, а пространство между наружным барабаном и дымогарной трубой - паровой.

Рис. 10. Вертикальный паровой котел с кипятильными трубами:
1 -наружный барабан; 2 -жаровая труба; 3 -грязевое кольцо; 4 - кипятильная труба; 5 -змеевик пароперегревателя; 6 - пароотборная труба; 7 - дымогарная труба; 8 -дымовая труба; 9 - предохранительная труба; 10 -туровочная дверца; 11 - футеровка; 12- колосники; 13 - прогивовес-зольник; 14 - опорное кольцо

В горловине жаровой трубы установлены две контрольные пробки, подающие сигнал в случае понижения уровня воды ниже допустимого предела.
Внутри парового пространства помещена труба, по которой пар поступает в верхнюю часть змеевика пароперегревателя и, пройдя по нему, выходит в пароподающую магистраль.

Основным направлением деятельности ГК «КАНЕКС» является изготовление и поставка запасных частей к паровым котлам тепловых электростанций и другого котельно-вспомогательного оборудования и трубопроводов. Основными производственными площадками холдинга являются «Щекинский завод котельно-вспомогательного оборудования и трубопроводов», «Кыштымское машиностроительное объединение» и предприятие «Озерскхимпром».

Паровые котлы предназначены для работы в составе энергоблоков ТЭС и ТЭЦ. Срок службы узлов паровых котлов ограничен расчетным ресурсом и определяется условиями эксплуатации оборудования. Во время эксплуатации оборудования тепловых электростанций, периодически отдельные блоки и узлы котлов требуют замены. Это нормальная ситуация даже для самого высококачественного оборудования, ведь разные узлы могут иметь разный срок эксплуатации в силу объективных причин. Специально для таких случаев предприятия нашего холдинга выпускают запчасти и комплектующие для ремонта котлов, и предлагают различные варианты модернизации котельного оборудования.

Типы поставляемых комплектующих к паровым котлам:

1. Каркас котла.

Каркасом котлоагрегата называют металлическую конструкцию, воспринимающую нагрузку от барабана, поверхностей нагрева, обмуровки, площадок и лестниц и других элементов котельного агрегата и передающую ее на фундамент или на строительные кон­струкции здания. Каркас современного котлоагрегата большой паропроизводительности имеет сложную конструкцию и состоит из вертикальных колонн, соединяющих их горизонтальных ферм, балок и диагональных связей. Верх колонн соединяют опорная (хребтовая) балка и потолочное перекрытие. Почти все элементы каркаса: колонны, фер­мы, балки и связи соединяют сваркой, что обеспечивает устойчивость и прочность кар­каса. Только балки, могущие при тепловом расширении или изгибе создавать значитель­ные дополнительные напряжения в колоннах, свободно опираются на каркас и прикреп­ляются болтами через овальные отверстия.

2. Барабан котла.

В котле с естественной или принудительной циркуляцией образование пара происходит в барабане, который представляет собой цилиндрический сосуд диаметром до 1,8 м при толщине стенки до 100 мм и более и длине до 30 м. К барабану присоединено большое количество подъемных и опускных труб циркуляционного контура, подводится питательная вода и присоединяется пароперегреватель. Барабан крепят на каркасе котла с использованием роликовых опор, обеспечивающих свободное расширение барабана при нагревании. Устройства для сепарации пара размещаются внутри барабана.

3. Водоопускные трубы.

Служат для подачи воды в экранные трубы топки из барабана котла. Для изготовления водоопускных труб в основном применяют трубы стали марки 20 диаметром 83-159 мм.

4. Топочные экраны.

Являются составляющими элементами топочной камеры. Топочные экраны имеют одновременно двойное назначение: выполняют роль ограждающих поверхностей и поверхностей нагрева. Экраны котлоагрегатов выполняются обычно из гладких труб, соединенных при помощи сварки. Кроме того, что экраны воспринимают теплоту из топки, они защищают обмуровку стен топки от разрушающего влияния высокой температуры и химического воздействия жидкого шлака. Температура обмуровки за трубами экранов в современных котлоагрегатах не превышает 500 ⁰С, что позволяет облегчить обмуровку и увеличить срок ее службы. Трубы экранов современных котлоагрегатов высокого давления с естественной циркуляцией имеют наружный диаметр 60 мм, котлоагрегатов среднего давления - 83 мм, просвет между трубами - соответственно 4 и 19 мм. Концы экранных труб привариваются к штуцерам горизонтальных коллекторов круглого сечения, изготовляемых из толстостенных труб, или непосредственно к коллектору.

5. Потолочный пароперегреватель.

Является частью конструкции котла. Его относят к радиационным поверхностям нагрева, которые воспринимают теплоту от газов, главным образом за счет излучения. Выполняется из стальных труб диаметром 32-60 мм и толщиной стенки 4-6 мм.

Радиационная часть пароперегревателя, расположенная на стенах и потолке топочной камеры, воспринимает лучистую теплоту и по конструкции мало чем отличается от экранов - состоит из труб, приваренных к коллекторам круглого сечения. В каждой пане­ли радиационной части пароперегревателя пар движется по трубам сначала сверху вниз, а затем через нижний коллектор поступает в другие трубы, по которым направляется вверх. В нескольких местах по высоте труб устанавливают направляющие опоры, прикрепляемые к балкам каркаса; эти крепления не препятствуют вертикальному перемещению труб при изменении их температуры. Крепление горизонтальных потолочных труб также не должно препятствовать их тепловому удлинению. Эти трубы подвешиваются на тягах к потолочному перекрытию каркаса.

6. Ширмовой пароперегреватель.

Это устройство, предназначенное для нагрева пара до температуры сверх насыщения за счет восприятия радиационного тепла из топочной камеры. Конструктивно блок ШПП выполнен в виде многорядных пакетов (ширм), изготовленных из гнутых стальных труб (диаметр труб 32-38 мм), объединенных входной и выходной камерой.

Полурадиационная часть пароперегревателя (ширмы), расположенная в верхней части топки и в горизонтальном газоходе, воспринимает как лучистую теплоту за счет радиации, так и теплоту, передаваемую конвекцией.На пылеугольных котлоагрегатах устанавливают вертикальные ширмы, менее подверженные шлакованию, а на газомазутных - горизонтальные.

7. Конвективный пароперегреватель.

Это устройство, предназначенное для перегрева пара до необходимой температуры за счет восприятия конвективного тепла из топочной камеры. Конструктивно блок КПП представляет собой систему стальных труб (змеевиков), объединенных в входной и выходной камерой. КПП является одним из самых ответственных узлов котла и работает в тяжелых температурных условиях. В зависимости от выходных параметров перегретого пара КПП изготавливается из легированной или высоколегированной стали.

Конвективная часть пароперегревателя расположена в горизонтальном газоходе и в конвективной шахте. В котлоагрегатах среднего давления, в которых на перегрев пара расходуется только 20% всей теплоты, весь пароперегреватель размещается в горизонтальном газоходе.

8. Микроблоки.

Относятся к конвективной части котла и служат для перегрева пара до необходимой температуры за счет восприятия конвективного тепла из топочной камеры. Конструктивно микроблоки представляют собой систему стальных змеевиков объединенных, входной и выходной камерой. Обычно для изготовления микроблоков служат трубы стали марки 12Х1МФ, 12Х18Н12Т.

9. НРЧ, СРЧ, ВРЧ прямоточных котлов.

В прямоточных котлах принято различать в экранах нижнюю (НРЧ), среднюю (СРЧ) и верхнюю (ВРЧ) радиационные части. Для изготовления экранов прямоточных котлов обычно используют трубы с наружным диаметром 32, 38 и 42 мм. Применяют как панели с прямыми вертикальными трубами, так многопетлевые панели. Широкое распространение получили в современных прямоточных котлах одноходовые и многоходовые трубные панели. Нижняя радиационная часть (НРЧ), расположенная в зоне ядра факела, где следует особенно опасаться неравномерного обогрева отдельных труб, выполнена из одноходовых панелей. Верхние ярусы экранов (СРЧ, ВРЧ) имеют многоходовые панели.

10. Водяной экономайзер.

Это элемент котла, предназначенный для предварительного подогрева котловой воды за счет тепла уходящих дымовых газов. ВЭК представляет собой блочную конструкцию, состоящую из рядов пакетов змеевиков, входной и выходной камеры. В современных котлоагрегатах применяют водяные экономайзеры кипящего типа, в которых вода не только доводится до температуры кипения, но и частично превращается в насыщенный пар. Экономайзеры выполняют в виде трубных пакетов, устанавливаемых в конвективной шахте котлоагрегата по ходу дымовых газов за конвективным паропере­гревателем. Пакеты состоят из змеевиков, изготовляемых из труб наружным диаметром от 25 до 42 мм, привариваемых к штуцерам или непосредственно к коллектору.

11. Воздухоподогреватель.

Это устройство, предназначенное для предварительного подогрева воздуха, подаваемого в топку котла для повышения эффективности горения топлива, а соответственно повышения КПД котла. В котлах, работающих на пылевидном топливе, также происходит сушка горячим воздухом из ВЗП. Воздухоподогреватели делятся на два типа: рекуперативные (трубчатые) и регенеративные (вращающиеся).

11.1. Трубчатый воздухоподогреватель.

Трубчатый воздухоподогреватель состоит из отдельных элементов (кубов), в которых вертикальные прямые стальные трубы 51×1,5 или 40×1,5 мм, расположенные в шахматном порядке, приварены своими концами к горизонтальным трубным доскам. Внутри труб движутся дымовые газы, а между трубами в горизонтальном направлении проходит воздух. Обычно по ширине котлоагрегата устанавливают несколько колонок воздухоподогревателя, а по вертикали - по нескольку кубов. Из одного куба в другой воздух переходит по перепускным коробам. Для компенсации теплового расширения воздухоподогревателя устанавливают наружный линзовый компенсатор, привариваемый внизу к верхнему кубу, а вверху - к обшивочной раме. В воздухоподогревателях высотой более 3 м устанавливают дополнительно боковые компенсаторы между верхними трубными досками и наружными стенами конвективной шахты.

11.2. Регенеративный воздухоподогреватель.

На современных котлоагрегатах устанавливаются два или большее число аппаратов регенеративного воздухоподогревателя диаметром 6,8 или 9,8 м, включаемых параллель­но. Каждый аппарат регенеративного воздухоподогревателя состоит из: корпуса, цилиндрического ротора, медленно вращающегося вокруг вертикальной оси воздушных и газовых патрубков, подводящих и отводящих воздух и дымовые газы.

Находящиеся в роторе вертикальные стальные пластины при вращении ротора попе­ременно нагреваются проходящим между ними потоком дымовых газов, а затем в воз­душном потоке охлаждаются и отдают воздуху полученную ими ранее теплоту. Ротор со­стоит из большого числа клиновидных секций, содержащих вертикальные пластины, скрепленные рамкой. Форма пластин обеспечивает образование между ними щелей для прохода попеременно дымовых газов и воздуха. Электродвигатель приводит во вращение ротор через редуктор и цевочное колесо, которое представляет собой расположенные по окружности ротора вертикальные валики (цевки). Такое цевочное зацепление, не являясь жестким, может надежно работать при наличии некоторых неточностей в изготовлении ротора. Во избежание перетекания воздуха в дымовые газы аппарат имеет кольцевое периферийное уплотнение, кольцевое внутреннее уплотнение вокруг вертикального вала и радиальные уплотнения между газовым и воздушным коробами. Все эти уплотнения установлены как в верхних, так и в нижних частях ротора.

12. Конденсационная установка.

Конденсационные котлы работают по принципу, который был известен более ста лет назад. Эффективное использование этого метода началось совсем недавно. Появилась возможность применения при изготовлении котлов отопления сплавов, которые не подвержены коррозии, а также использования различных марок нержавеющей стали.

Вентилятор установлен перед горелкой, который высасывает из газопровода газ, смешивает с воздухом и направляет в горелку рабочую топливную смесь. Удаление дымовых газов осуществляется через коаксиальные дымоходы «труба в трубе», которые выполнены из термостойкого пластика. Управляемый автоматикой насос оптимизирует мощность системы отопления, экономит электроэнергию и снижает шум от циркулирующего в отопительной системе теплоносителя.

13. Пароперепускные трубы.

Являются трубными элементами, работающими под давлением. Изготавливаются из труб диаметром 108-133 мм. Марка применяемой стали и толщина стенки трубы зависят от тех параметров, при которых работает данная труба. Обычно для изготовления пароперепускных труб служат стали марок: 20, 12ХМФ, 12Х1МФ, 15ГС и им подобные.

14. Коллекторы.

Это элементы котла, предназначенные для сбора или раздачи рабочей среды, представляют собой стальную толстостенную сварную цилиндрическую конструкцию и объединяют группу труб. По своему назначению коллекторы разделяются на паровые, водяные, коллекторы пароперегревателя и коллекторы малых диаметров, применяемые, как правило, для экономайзеров. Коллекторы изготавливаются из труб марок сталей: 20, 15ГС, 15ХМ, 12Х1МФ, 15Х1М1Ф.

15. Пароохладители.

Представляют собой теплообменные системы, предназначенные для понижения температуры перегретого пара в котлоагрегате или перед турбиной.

Пароохладители обычно устанавливают в промежуточном коллекторе. В зависимости от места расположения пароохладителей в котле и от вида теплообмена, осуществляющегося в нем, различают радиационные, конвективно-радиационные, ширмовые и конвективные пароохладители. Все пароохладители в зависимости от принципа охлаждения пара подразделяются на поверхностные и впрыскивающие.

В поверхностных пароохладителях используется охлаждение пара путем отвода от пара тепла питательной водой, которая пропускается по трубкам теплообменного аппарата.

Во впрыскивающих пароохладителях используется охлаждение пара путем отвода от пара тепла питательной водой, которая непосредственно впрыскивается в аппарат.

16. Блочные автоматизированные горелочные устройства.

Характеризуются широким диапазоном теплопроизводительности - 10...20000 кВт и предназначены для работы на природном и сжиженном газе, легких жидких топливах и мазуте. В комбинированных горелках сжигаются как газообразные, так и жидкие топлива.

Горелочное устройствопредназначено для сжигания природного и сжиженного газа и оснащено следующей арматурой: шаровым краном для подачи газа; реле давления газа; многофункциональным газовым мультиблоком, в котором имеются фильтр (грязеуловитель), два магнитных клапана, регулятор давления газа. По присоединительному каналу газ поступает в пламенную трубу.

17. Амбразуры горелок.

Являются конструктивной составляющей стен топочных блоков. Выполняют роль конструкции для размещения горелочного устройства котла.

18. Гарнитура котлов.

В газоходах за каждым котлом устанавливают дымовые заслонки (шиберы), с помощью которых регулируют тягу. Люки и лазы служат для осмотра, ремонта или очистки внешних и внутренних поверхностей нагрева. В верхней части топки или газохода котлов, работающих на газообразном или жидком топливе, устанавливают взрывные клапаны, которые служат для предохранения обмуровки топки и котла от разрушения при взрыве.

Контакты:

Котлы различают по следующим признакам:

По назначению:

Энергетически е - вырабатывающие пар для паровых турбин; их отличает высокая производительность, повышенные параметры пара.

Промышленные - вырабатывающие пар как для паровых турбин, так и для технологических нужд предприятия.

Отопительные - производящие пар для отопления промышленных,жилых и общественных зданий. К ним относятся и водогрейные котлы. Водогрейный котел - устройство, предназначенное для получения горячей воды с давлением выше атмосферного.

Котлы-утилизаторы - предназначены для получения пара или горячей воды за счет использования тепла вторичных энергетических ресурсов (ВЭР) при переработке отходов химических производств, бытового мусора и т.д.

Энерготехнологические - предназначены для получения пара за счет ВЭР и являющиеся неотъемлемой частью технологического процесса (например, содорегенерационные агрегаты).

По конструкции топочного устройства (рис. 7):

Рис. 7. Общая классификация топочных устройств

Различают топки слоевые - для сжигания кускового топлива и камерные - для сжигания газового и жидкого топлива, а также твердого топлива в пылевидном (или мелкодробленом) состоянии.

Слоевые топки подразделяются на топки с плотным и кипящим слоем, а камерные - на факельные прямоточные и циклонные (вихревые).

Камерные топки для пылевидного топлива подразделяют на топки с твердым и жидким шлакоудалением. Кроме того, по конструкции они могут быть однокамерными и многокамерными, а по аэродинамическому режиму - под разрежением и под наддувом .

В основном используется схема под разряжением, когда в газоходах котла дымососом создается давление меньше атмосферного, то есть разряжение. Но в некоторых случаях при сжигании газа и мазута или твердого топлива с жидким шлакоудалением может использоваться схема под наддувом.

Схема котла под наддувом. В этих котлахвысоконапорная дутьевая установка обеспечивает избыточное давление в топочной камере 4 - 5 кПа, которое позволяет преодолеть аэродинамическое сопротивление газового тракта (рис. 8). Поэтому в этой схеме отсутствует дымосос. Газоплотность газового тракта обеспечивается установкой мембранных экранов в топочной камере и на стенах газоходов котла.

Достоинства данной схемы:

Сравнительно низкие капитальные затраты на обмуровку;

Более низкий по сравнению с котлом, работающим под разряжением, расход электроэнергии на собственные нужды;

Более высокий КПД за счет снижения потерь с уходящими газами из-за отсутствия присосов воздуха в газовый тракт котла.

Недостаток - сложность конструкции и технологии изготовления мембранных поверхностей нагрева.


По виду теплоносителя , генерируемого котлом: паровые и водогрейные .

По перемещению газов и воды (пара):

Газотрубные (жаротрубные и с дымогарными трубами);

Водотрубные;

Комбинированные.

Схема жаротрубного котла. Котлы предназначены для замкнутых систем отопления, вентиляции и горячего водоснабжения и выпускаются для работы при допустимом рабочем давлении 6 бар и допустимой температуре воды до 115°С. Котлы предназначены для работы на газообразном и жидком топливе, в том числе на мазуте и сырой нефти, и обеспечивают КПД при работе на газе - 92 % и на мазуте - 87 %.

Стальные водогрейные котлы имеют горизонтальную реверсивную камеру сгорания с концентрическим расположением дымогарных труб (рис. 9). Для оптимизации тепловой нагрузки, давления в камере сгорания и температуры отходящих газов дымогарные трубы оснащены турбулизаторами из нержавеющей стали.

Рис. 8. Схема котла под «наддувом»:

1 - воздухозаборная шахта; 2 - высоконапорный вентилятор; 3 - воздухоподогреватель 1-й ступени; 4 - водяной экономайзер 1-й ступени; 5 - воздухоподогреватель 2-й ступени; 6 - воздуховоды горячего воздуха; 7 - горелочное устройство; 8 - газоплотные экраны, выполненные из мембранных труб; 9 - газоход

Рис. 9. Схема топочной камеры жаротрубных котлов:

1 - передняя крышка;

2 - топка котла;

3 - дымогарные трубы;

4 - трубные доски;

5- каминная часть котла;

6 - люк каминной части;

7 - горелочное устройство

По способу циркуляции воды все разнообразие конструкций паровых котлов на весь диапазон рабочих давлений можно свести к трем типам:

- с естественной циркуляцией - рис. 10а;

- с многократной принудительной циркуляцией - рис. 10б;

- прямоточные - рис. 10в.

Рис. 10. Способы циркуляции воды

В котлах с естественной циркуляцией движение рабочего тела по испарительному контуру осуществляется за счет разности плотностей столбов рабочей среды: воды в опускной питательной системе и пароводяной смеси в подъемной испарительной части циркуляцион-ного контура (рис. 10а). Движущий напор циркуляции в контуре можно выразить формулой

, Па,

где h - высота контура, g - ускорение свободного падения, , - плотность воды и пароводяной смеси.

При критическом давлении рабочая среда является однофазной и ее плотность зависит только от температуры, а так как последние близки между собой в опускной и подъемной системах, то движущий напор циркуляции будет очень мал. Поэтому на практике естественная циркуляция применяется для котлов только до высоких давлений, обычно не выше 14 МПа.

Движение рабочего тела по испарительному контуру характери-зуется кратностью циркуляции К, которая представляет собой отношение часового массового расхода рабочего тела через испарительную систему котла к его часовой паропроизводительности. Для современных котлов сверхвысокого давления К=5-10, для котлов низких и средних давлений К составляет от 10 до 25.

Особенностью котлов с естественной циркуляцией является способ компоновки поверхностей нагрева, заключающийся в следующем:

· опускные трубы не должны обогреваться для сохранения на достаточно высоком уровне ;

· подъемные трубы должны иметь такую конструкцию, чтобы исключить образование паровых пробок при движении по ним пароводяной смеси;

· скорости воды и смеси во всех трубах должны быть умеренными для получения невысоких гидравлических сопротивлений, что достигается выбором труб поверхностей нагрева достаточно большого диаметра (60 - 83 мм).

В котлах с многократной принудительной циркуляцией движение рабочего тела по испарительному контуру осуществляется за счет работы циркуляционного насоса, включаемого в опускной поток рабочей жидкости (рис. 10б). Кратность циркуляции поддерживается невысокой (К=4-8), поскольку циркуляционный насос гарантирует ее сохранение при всех колебаниях нагрузки. Котлы с многократной принудительной циркуляцией позволяют экономить металл для поверхностей нагрева, так как допускаются повышенные скорости воды и рабочей смеси, частично улучшая, таким образом, охлаждение стенки труб. Габариты агрегата при этом несколько снижаются, так как диаметр трубок можно выбирать меньшим, чем для котлов с естественной циркуляцией. Эти котлы могут применяться вплоть до критических давлений 22,5 МПа, наличие барабана дает возможность хорошо осушать пар и продувать загрязненную котловую воду.

В прямоточных котлах (рис. 10в) кратность циркуляции равна единице и движение рабочего тела от входа в экономайзер и до выхода из агрегата перегретого пара принудительное, осуществляемое питательным насосом. Барабан (достаточно дорогой элемент) отсутствует, что дает при сверхвысоком давлении известное преимущество прямоточным агрегатам; однако это обстоятельство вызывает при сверхкритическом давлении удорожание станционной водоподготовки, поскольку повышаются требования к чистоте питательной воды, которая должна в этом случае содержать примесей не больше, чем выдаваемый котлом пар. Прямоточные котла универсальны по рабочему давлению, а на закритическом давлении вообще являются единственными генераторами пара и находят широкое применение в современной электроэнергетике.

Существует разновидность циркуляции воды в прямоточных парогенераторах - комбинированная циркуляция, осуществляемая за счет особого насоса или дополнительного параллельного циркуляционного контура естественной циркуляции в испарительной части прямоточного котла, позволяющая улучшить охлаждение экранных труб при малых нагрузках котла за счет увеличения на 20-30 % массы циркулируемой через них рабочей среды.

Схема котла с многократной принудительной циркуляцией на докритическое давление представлена на рис. 11.

Рис. 11. Конструктивная схема котла с многократной принудительной циркуляцией:

1 - экономайзер; 2 - барабан;

3 - опускная питательная труба; 4 - циркуляционный насос; 5 - раздача воды по циркуляционным контурам;

6 - испарительные радиационные поверхности нагрева;

7 - фестон; 8 - пароперегреватель;

9 - воздухоподогреватель

Циркуляционный насос 4 работает с перепадом давления 0,3 МПа и позволяет применять трубы малого диаметра, что дает экономию металла. Малый диаметр труб и невысокая кратность циркуляции (4 - 8) вызывают относительное снижение водяного объема агрегата, следовательно, снижение габаритов барабана, уменьшение сверлений в нем, а отсюда общее снижение стоимости котла.

Малый объем и независимость полезного напора циркуляции от нагрузки позволяют быстро растапливать и останавливать агрегат, т.е. работать в регулировочно-пусковом режиме. Область применения котлов с многократной принудительной циркуляцией ограничивается сравнительно невысокими давлениями, при которых можно получать наибольший экономический эффект за счет удешевления развитых конвективных испарительных поверхностей нагрева. Котлы с многократной принуди-тельной циркуляцией нашли распространение в теплоутилизационных и парогазовых установках.

Прямоточные котлы. Прямоточные котлы не имеют зафиксированной границы между экономайзером и испарительной частью, между испарительной поверхностью нагрева и пароперегревателем. При изменении температуры питательной воды, рабочего давления в агрегате, воздушного режима топки, влажности топлива и других факторов соотношения между поверхностями нагрева экономайзера, испарительной части и перегревателя меняются. Так, при понижении давления в котле снижается теплота жидкости, повышается теплота испарения и снижается теплота перегрева, поэтому уменьшается зона, занимаемая экономайзером (зона подогрева), растет зона испарений и уменьшается зона перегрева.

В прямоточных агрегатах все примеси, поступающие с питательной водой, не могут удаляться с продувкой подобно барабанным котлам и откладываются на стенках поверхностей нагрева или уносятся с паром в турбину. Поэтому прямоточные котлы предъявляют высокие требования к качеству питательной воды. Для уменьшения опасности пережога труб из-за отложения солей в них зону, в которой испаряются последние капли влаги и начинается перегрев пара, на докритических давлениях выносят из топки в конвективный газоход (так называемая вынесенная переходная зона ).

В переходной зоне идет энергичное выпадение и отложение примесей, а так как температура стенки металла труб в переходной зоне ниже, чем в топке, то опасность пережога труб значительно снижается и толщину отложений можно допускать большей. Соответственно удлиняется межпромывочная рабочая кампания котла.

Для агрегатов закритических давлений переходная зона, т.е. зона усиленного выпадения солей, также имеется, но она сильно растянута. Так, если для высоких давлений ее энтальпия измеряется величиной 200-250 кДж/кг, то для закритических давлений возрастает до 800 кДж/кг, и тогда выполнение вынесенной переходной зоны становится нецелесообразным, тем более, что содержание солей в питательной воде здесь так мало, что практически равно их растворимости в паре. Поэтому, если котел, спроектированный на закритическое давление, имеет вынесенную переходную зону, то делается это только из соображений обычного охлаждения дымовых газов.

Из-за малого аккумулирующего объема воды у прямоточных котлов важную роль играет синхронность подачи воды, топлива и воздуха. При нарушении этого соответствия в турбину можно подать влажный или чрезмерно перегретый пар, в связи с чем для прямоточных агрегатов автоматизация регулирования всех процессов является просто обязательной. Прямоточные котлы конструкции профессора Л.К. Рамзина. Особенностью котла является компоновка радиационных поверхностей нагрева в виде горизонтально-подъемной навивки трубок по стенам топки с минимумом коллекторов (рис. 12).

Рис. 12. Конструктивная схема прямоточного котла Рамзина:

1 - экономайзер; 2 - перепускные необогреваемые трубы; 3 - нижний распределительный коллектор воды; 4 - экранные трубы; 5 - верхний сборный коллектор смеси; 6 - вынесенная переходная зона; 7 - настенная часть перегревателя; 8 - конвективная часть перегревателя; 9 -воздухоподогреватель; 10 - горелка

Как в дальнейшем показала практика, такое экранирование имеет как положительные, так и отрицательные стороны. Позитивным является равномерный обогрев отдельных трубок, включенных в ленту, так как трубки проходят по высоте топки все температурные зоны в одинаковых условиях. Негативным - невозможность выполнения радиационных поверхностей заводскими крупными блоками, а также повышенная склонность к теплогидравлическим разверкам (неравномерное распределение температуры и давления в трубах по ширине газохода) при сверхвысоком и сверхкритическом давлении из-за большого приращения энтальпии в длинном змеевике.

Для всех систем прямоточных агрегатов соблюдаются некоторые общие требования. Так, в конвективном экономайзере питательная вода до поступления в топочные экраны не догревается до кипения примерно на 30 °С, что устраняет образование пароводяной смеси и неравномерное ее распределение по параллельным трубкам экранов. Далее, в зоне активного горения топлива, в экранах обеспечивается достаточно высокая массовая скорость ρω ≥ 1500 кг/(м 2 ·с) при номинальной паропроизводительности D н, что гарантирует надежное охлаждение трубок экранов. Около 70 - 80 % воды превращается в пар в экранах топки, а в переходной зоне испаряется оставшаяся влага и весь пар перегревается на 10-15 °С во избежание отложения солей в верхней радиационной части перегревателя.

Кроме того, паровые котлы классифицируются по давлению пара и по паропроизводительности.

По давлению пара:

Низкого - до 1 МПа;

Среднего от 1 до 10 МПа;

Высокого - 14 МПа;

Сверхвысокого - 18-20 МПа;

Сверхкритического - 22,5 МПа и выше.

По производительности:

Малая -до 50 т/ч;

Средняя - 50-240 т/ч;

Большая (энергетическая) - свыше 400 т/ч.

Маркировка котлов

Для маркировки котлов установлены следующие индексы:

- вид топлива : К - каменный уголь; Б - бурый уголь; С - сланцы; М - мазут; Г - газ (при сжигании мазута и газа в камерной топке индекс типа топки не указывается); О - отходы, мусор; Д - другие виды топлива;

- тип топки: Т - камерная топка с твердым шлакоудалением; Ж - камерная топка с жидким шлакоудалением; Р - слоевая топка (индекс вида топлива, сжигаемого в слоевой топке, в обозначении не указывается); В - вихревая топка; Ц - циклонная топка; Ф - топка с кипящим слоем; в обозначение котлов с наддувом вводится индекс Н ; при сейсмически стойком исполнении - индекс С .

- способ циркляции: Е - естественная; Пр - многократная принудительная;

Пп - прямоточные котлы.

Цифрами указывается:

- для паровых котлов - паропроизводительность (т/ч), давление перегретого пара (бар), температура перегретого пара (°С);

- для водогрейных - теплопроизводительность (МВт).

Например: Пп1600-255-570 Ж . Прямоточный котел паропроизводи-тельностью 1600 т/ч, давление перегретого пара - 255 бар, температура пара - 570 °С, топка с жидким шлакоудалением.

Компоновка котлов

Под компоновкой котла подра-зумевается взаимное расположение газохо-дов и поверхностей нагрева (рис. 13).

Рис. 13. Схемы компоновки котлов:

а --- П-образная компоновка; б - двухходовая компоновка; в - компоновка с двумя конвективными шахтами (Т-образная); г - компоновка с U-образными конвективными шахтами; д - компоновка с инверторной топкой; е - башенная компоновка

Наиболее распространена П-образная компоновка (рис.13а - одноходовая , 13б - двухходовая ). Преимуществами ее являются подача топлива в нижнюю часть топки и вывод продуктов сгорания из нижней части конвективной шахты. Недостатки этой компоновки — неравномерное заполнение газами топочной камеры и неравномерное омы-вание продуктами сгорания поверхностей на-грева, расположенных в верхней части агре-гата, а также неравномерная концентрация золы по сечению конвективной шахты.

Т-образная компоновка с двумя конвек-тивными шахтами, расположенными по обе стороны топки с подъемным движением газов в топке (рис. 13в), позволяет уменьшить глубину конвективной шахты и высоту гори-зонтального газохода, но наличие двух кон-вективных шахт усложняет отвод газов.

Трехходовая компоновка агрегата с дву-мя конвективными шахтами (рис. 13г) иногда применяется при верхнем распо-ложении дымососов.

Четырехходовая компоновка (Т-образная двухходовая) с двумя вертикальными пе-реходными газоходами, заполненными разря-женными поверхностями нагрева, применяет-ся при работе агрегата на зольном топливе с легкоплавкой золой.

Башенная компоновка (рис. 13е) используется для пиковых парогенераторов, работающих на газе и мазуте в целях ис-пользования самотяги газоходов. При этом возникают затруднения, связанные с креплением конвек-тивных поверхностей нагрева.

U - образная компоновка с инверторной топкой с нисходящим в ней потоком продуктов сгорания и подъемным их движением в конвективной шахте (рис. 13д) обеспечивает хорошее заполнение топки факелом, низкое расположение пароперегревателей и минимальное сопротивление воздушного тракта вследствие малой длины воздуховодов. Недостаток такой компоновки - ухудшенная аэродинамика переходного газохода, обусловленная расположением горелок, дымососов и вентиляторов на большой высоте. Такая компоновка может оказаться целесообразной при работе котла на газе и мазуте.

Дутьевой вентилятор

    производительность – 1000 м.час;

    напор – 120 м. в. ст.;

    мощность двигателя 7,0 кВ

    число оборотов – 1000 об/мин;

    напряжение 380 в.

Газомазутные горелки

Производительность по мазуту - 9000 кг/час при Рмаз = 18 – 20 атм.

Горелка имеет периферийный подвод газа и механический распылитель мазут, охлаждение форсунок осуществляется воздухом от дутьевых вентиляторов при работе. Неработающие форсунки должны быть сняты.

Для очистки конвективной поверхности нагрева котла от эоловых отложений предусмотрена обдувка сетевой водой.

Качество сетевой воды, поступающей в котел, должно удовлетворять следующим нормам:

А) карбонатная жесткость не должна превышать 4000 м экв/кг;

В) свободная углекислота должна отсутствовать.

Топочная камера котла

Топочная камера котла предназначен для сжигания высококалорийного мазута и природного газа. Размеры топочной камеры 6,23 х 6,28 кв.м, высота призматической части 5,3 м. Стены полностью экранированы трубами  60 х 3,5 с шагом 64 мм. Наклонные части холодной воронки топки закрыты шамотом. Амбразуры горелок выполнены из зашипованных трубчатых колец, включенных в циркуляцию котла, покрытых хромитовой массой. Амбразуры горелок № 3, 4, 13, 14 наклонены на 15 0 , остальные на 10 0 , все трубы экранов соединены между собой горизонтальными поясами жесткости с шагом по высоте 2,8м.

Объем топочной камеры 245м 3 , радиационная поверхность экранов 224 м 2 . При обмывке смывная вода через гидрозатворы шламовых комодов сбрасывается в приямок кислых вод.

Конвективная часть

Конвективная часть состоит из 96 секций. Каждая секция состоит из «u-образных» змеевиков из труб 28х3 мм, вваренными концами в стояки 88х3,5 мм. Змеевики расположены в шахматном порядке с шагом 64 мм и 38 мм. По ходу газов конвективная часть разделена на 2 пакета, расстояние между которыми составляет 60 мм. Поверхность нагрева конвективной части составляет 2960 м 2 .

Обмывка котла

Для очистки конвективной части котла от золовых отложений предусмотрена обмывка ее сетевой водой. Обмывка осуществляется путем подачи сетевой воды через сопла, закрепленные на трубах, расположенных в газовом коробе над конвективной частью.

Предохранительные клапаны котла

На выходом сетевом трубопроводе котла установлены предохранительные клапана:

Предохранительный клапан « отрегулирован на Р =16м/см2, № 2 на Р = 16; №3, №4 то же.

Защита ПВК 1-2-3-4 при работе котлов на мазуте.

Для обеспечения надежной и бесперебойной работы котла предусматривается следующая защита ПВК, действующая на отключения котла по топливу:

При повышении давления воды за котлом свыше 16 ата.

При понижении давления воды за котлом ниже 8,0 ата

При уменьшении расхода воды через котел:

при пиковом режиме ниже 1750т/час;

При увеличении температуры воды за котлом выше 1550С

При уменьшении давления мазут до Р = 10 ата

При погасании факела в топке в течении 3 сек.

Технологические блокировки ПВК 1-2-3-4

1. Задвижка на общем мазутопроводе к котлу, задвижка на возврате мазута с котла может быть открыта только при условии:

наличия определенного расхода воды через котел не менее 1700т/час, для чего нужно открыть задвижки 1640, 1641 и отрегулировать расход задвижкой 1642 не менее 1700 т/час;

включения ключа цепей защиты на положение «включено»;

давление в мазутопроводе не менее 10 ата;

включение вентиляторов растопочных горелок для вентиляции топки не менее 2- в таком сочетании: 5 и 12 или 6 и 11, или все вышеуказанные четыре вентилятора.

2. Задвижка №1640 на трубопроводе воды до котла может быть закрыта только после закрытия задвижки на общем мазутопроводе к котлу и возврате мазута от котла.

3. Подача топлива к растопочным горелкам возможна только после включения ключей, зажигающих устройств в положении «включено» и выключения вентиляторов растопочных горелок.

4. При закрытии задвижки № 1640 до котла автоматически закрывается задвижка № 1641 после котла.

Управление ПВК

Кроме горелок с теплового щита управляются:

    задвижки на подводе воды к котлу 31640

    задвижки на отводе воды от котла №1641

    задвижка обводной линии сетевой воды №1642

    задвижка на подводе и отводе мазута от котла

    клапан на подводе газа к зажигающим устройствам.

На щите установлено:

    переключатели вида топлива 1пт 2пт

    переключатель защиты ЗПТ (для газа и мазута)

    ключ опробования сигнализации и защиты ОЗ

    ключ съема сигнала КС.

Технологическая сигнализация

На световом табло щита вынесены сигналы срабатывания любой из защит котла, а также сигналы отключения цепей защиты, понижения температуры мазута к котлу и неисправностей на сборках задвижек № 1640 и №1641. Съем сигнала производится ключом КС. Световое табло погаснет только после устранения неисправности. Опробование сигнализации производится ключом КС. При этом опробуется одновременно звонок и все табло.

Аварийная сигнализация

Сигнализацией предусматривается светозвуковая сигнализация аварийного останова вентиляторов, горелок, и кроме того, для автоматизированных горелок (№7, 8, 9, 10) – светозвуковая сигнализация несоответствия положения запорной арматуры и вентиляторов соответствующих горелок. Причем схема для вентиляторов, автоматизированных горелок предусматривает сигнализацию аварийного их останова. Световая сигнализация для всех автоматизированных горелок обеспечивается сигнальными лампами.

Технологический контроль

На тепловой щит выведены следующие приборы:

    Измерение и регистрация температуры сетевой воды до и посл котла и уходящих газов.

    Контроль зажигающих устройств растопочных горелок.

    Измерение температуры мазута

    Измерение давления воды до и после котла, мазута.

    Разряжение в топке, за котлами.

    Регистрация расхода воды через котел.

Наименование величины

Размер-ность

Пиковый режим

Основной режим

Расход топлива

кгм 3 /час

Температура воды на входе в котел

Температура воды на выходе из котла

Температура наружного воздуха

КПД котла

Видимое тепловое напряжение топочного объема

Ккал/м 3 /час

Температура газов на выходе из топки

Температура газов за нижними пакетами конвективной части

Температура уходящих газов

Водяной объем вместе с трубопроводами в пределах котельной