19.10.2019

Kvadratinės lygtys ir jų sistemos. Kvadratinės lygtys. Diskriminuojantis. Sprendimas, pavyzdžiai


Lygčių naudojimas yra plačiai paplitęs mūsų gyvenime. Jie naudojami atliekant daugybę skaičiavimų, statant konstrukcijas ir net sportuojant. Žmogus senovėje naudojo lygtis, o nuo to laiko jų vartojimas tik išaugo. Diskriminantas leidžia išspręsti bet kurią kvadratinę lygtį naudojant bendrą formulę, kurios forma yra tokia:

Diskriminacinė formulė priklauso nuo daugianario laipsnio. Aukščiau pateikta formulė tinka šios formos kvadratinėms lygtims išspręsti:

Diskriminantas turi šias savybes, kurias reikia žinoti:

* "D" yra 0, kai daugianomas turi kelias šaknis (lygias šaknis);

* "D" yra simetriškas daugianomas daugianario šaknų atžvilgiu, todėl yra daugianario koeficientas; be to, šio daugianario koeficientai yra sveikieji skaičiai, neatsižvelgiant į plėtinį, kuriame paimtos šaknys.

Tarkime, kad mums duota tokios formos kvadratinė lygtis:

1 lygtis

Pagal formulę turime:

Nuo \ lygtis turi 2 šaknis. Apibrėžkime juos:

Kur galiu išspręsti lygtį naudojant diskriminacinį internetinį sprendiklį?

Galite išspręsti lygtį mūsų svetainėje https://site. Nemokamas internetinis sprendėjas leis per kelias sekundes išspręsti bet kokio sudėtingumo internetines lygtis. Viskas, ką jums reikia padaryti, tai tiesiog įvesti savo duomenis į sprendiklį. Taip pat galite žiūrėti vaizdo įrašo instrukcijas ir sužinoti, kaip išspręsti lygtį mūsų svetainėje. O jei turite klausimų, galite užduoti juos mūsų „VKontakte“ grupėje http://vk.com/pocketteacher. Prisijunkite prie mūsų grupės, mes visada džiaugiamės galėdami jums padėti.

Ši tema iš pradžių gali pasirodyti sudėtinga dėl daugybės ne tokių paprastų formulių. Ne tik pačios kvadratinės lygtys turi ilgus žymėjimus, bet ir šaknys randamos per diskriminantą. Iš viso gaunamos trys naujos formulės. Nelabai lengva prisiminti. Tai įmanoma tik dažnai sprendžiant tokias lygtis. Tada visos formulės įsimins pačios.

Bendras kvadratinės lygties vaizdas

Čia mes siūlome jų aiškų įrašymą, kai pirmiausia rašomas didžiausias laipsnis, o tada mažėjančia tvarka. Dažnai pasitaiko situacijų, kai sąlygos yra nesuderinamos. Tada geriau perrašyti lygtį mažėjančia kintamojo laipsnio tvarka.

Leiskite pristatyti kai kuriuos užrašus. Jie pateikiami toliau esančioje lentelėje.

Jei priimsime šiuos žymėjimus, visos kvadratinės lygtys bus sumažintos iki tokio žymėjimo.

Be to, koeficientas a ≠ 0. Ši formulė bus pažymėta numeriu vienas.

Kai pateikiama lygtis, neaišku, kiek šaknų bus atsakyme. Kadangi visada galimas vienas iš trijų variantų:

  • tirpalas turės dvi šaknis;
  • atsakymas bus vienas skaičius;
  • lygtis iš viso neturės šaknų.

O kol sprendimas nėra galutinai priimtas, sunku suprasti, koks variantas atsiras konkrečiu atveju.

Kvadratinių lygčių įrašų tipai

Užduotyse gali būti skirtingų įrašų. Jie ne visada atrodys kaip bendrosios kvadratinės lygties formulė. Kartais jame trūks kai kurių terminų. Tai, kas buvo parašyta aukščiau, yra visa lygtis. Jei pašalinsite antrą ar trečią terminą, gausite ką nors kita. Šie įrašai dar vadinami kvadratinėmis lygtimis, tik nepilnais.

Be to, gali išnykti tik terminai su koeficientais „b“ ir „c“. Skaičius „a“ jokiomis aplinkybėmis negali būti lygus nuliui. Nes tokiu atveju formulė virsta tiesine lygtimi. Neišsamios lygčių formos formulės bus tokios:

Taigi, yra tik dviejų tipų, be pilnųjų, yra ir nepilnų kvadratinių lygčių. Tegul pirmoji formulė yra du, o antroji - trys.

Diskriminantas ir šaknų skaičiaus priklausomybė nuo jo vertės

Norėdami apskaičiuoti lygties šaknis, turite žinoti šį skaičių. Jį visada galima apskaičiuoti, nesvarbu, kokia būtų kvadratinės lygties formulė. Norėdami apskaičiuoti diskriminantą, turite naudoti žemiau parašytą lygybę, kurios skaičius bus ketvirtas.

Pakeitę koeficientų reikšmes į šią formulę, galite gauti skaičius su skirtingais ženklais. Jei atsakymas yra teigiamas, atsakymas į lygtį bus dvi skirtingos šaknys. Jei skaičius neigiamas, kvadratinės lygties šaknų nebus. Jei jis lygus nuliui, bus tik vienas atsakymas.

Kaip išspręsti pilną kvadratinę lygtį?

Tiesą sakant, šis klausimas jau pradėtas svarstyti. Nes pirmiausia reikia rasti diskriminantą. Nustačius, kad yra kvadratinės lygties šaknys ir žinomas jų skaičius, reikia naudoti kintamųjų formules. Jei yra dvi šaknys, tuomet reikia taikyti šią formulę.

Kadangi jame yra ženklas „±“, bus dvi reikšmės. Po kvadratinės šaknies ženklu esanti išraiška yra diskriminantas. Todėl formulę galima perrašyti kitaip.

Penkta formulė. Iš to paties įrašo aišku, kad jei diskriminantas yra lygus nuliui, tada abi šaknys įgis tas pačias reikšmes.

Jei kvadratinių lygčių sprendimas dar neišspręstas, prieš taikant diskriminacines ir kintamąsias formules geriau užsirašyti visų koeficientų reikšmes. Vėliau šis momentas nesukels sunkumų. Tačiau pačioje pradžioje kyla sumaištis.

Kaip išspręsti nepilną kvadratinę lygtį?

Čia viskas daug paprasčiau. Papildomų formulių net nereikia. O tų, kurie jau buvo užrašyti diskriminantui ir nežinomam, neprireiks.

Pirma, pažvelkime į nepilną lygtį numeris du. Šioje lygybėje reikia iš skliaustų išimti nežinomą kiekį ir išspręsti tiesinę lygtį, kuri liks skliausteliuose. Atsakymas turės dvi šaknis. Pirmasis būtinai lygus nuliui, nes yra daugiklis, susidedantis iš paties kintamojo. Antrasis bus gautas sprendžiant tiesinę lygtį.

Neišsami lygtis numeris trys išsprendžiamas perkeliant skaičių iš kairės lygybės pusės į dešinę. Tada reikia padalyti iš koeficiento, nukreipto į nežinomybę. Belieka ištraukti kvadratinę šaknį ir nepamiršti du kartus užsirašyti priešingais ženklais.

Žemiau pateikiami keli žingsniai, kurie padės išmokti išspręsti visų rūšių lygybes, kurios virsta kvadratinėmis lygtimis. Jie padės mokiniui išvengti klaidų dėl neatidumo. Šie trūkumai gali lemti prastus pažymius studijuojant plačią temą „Kvadratinės lygtys (8 klasė). Vėliau šių veiksmų nereikės atlikti nuolat. Nes atsiras stabilus įgūdis.

  • Pirmiausia turite parašyti lygtį standartine forma. Tai yra, pirmiausia terminas su didžiausiu kintamojo laipsniu, o tada - be laipsnio, o galiausiai - tik skaičius.
  • Jei prieš koeficientą „a“ atsiranda minusas, pradedančiajam, studijuojančiam kvadratines lygtis, tai gali apsunkinti darbą. Geriau jo atsikratyti. Šiuo tikslu visa lygybė turi būti padauginta iš „-1“. Tai reiškia, kad visi terminai pakeis ženklą į priešingą.
  • Taip pat rekomenduojama atsikratyti frakcijų. Tiesiog padauginkite lygtį iš atitinkamo koeficiento, kad vardikliai panaikintų.

Pavyzdžiai

Būtina išspręsti šias kvadratines lygtis:

x 2 − 7x = 0;

15 − 2x − x 2 = 0;

x 2 + 8 + 3x = 0;

12x + x 2 + 36 = 0;

(x+1) 2 + x + 1 = (x+1) (x+2).

Pirmoji lygtis: x 2 − 7x = 0. Ji yra nepilna, todėl išspręsta taip, kaip aprašyta formulėje numeris antroji.

Išėmus jį iš skliaustų, paaiškėja: x (x - 7) = 0.

Pirmoji šaknis įgauna reikšmę: x 1 = 0. Antroji bus rasta iš tiesinės lygties: x - 7 = 0. Nesunku pastebėti, kad x 2 = 7.

Antroji lygtis: 5x 2 + 30 = 0. Vėlgi nepilna. Tik ji išspręsta taip, kaip aprašyta trečiojoje formulėje.

Perkėlus 30 į dešinę lygties pusę: 5x 2 = 30. Dabar reikia padalyti iš 5. Pasirodo: x 2 = 6. Atsakymai bus skaičiai: x 1 = √6, x 2 = - √6.

Trečioji lygtis: 15 − 2x − x 2 = 0. Toliau kvadratinės lygtys prasidės perrašant jas standartine forma: − x 2 − 2x + 15 = 0. Dabar atėjo laikas pasinaudoti antruoju naudingu patarimu ir viską padauginti iš minus vienas. Pasirodo x 2 + 2x - 15 = 0. Naudojant ketvirtąją formulę reikia apskaičiuoti diskriminantą: D = 2 2 - 4 * (- 15) = 4 + 60 = 64. Tai teigiamas skaičius. Iš to, kas pasakyta aukščiau, paaiškėja, kad lygtis turi dvi šaknis. Juos reikia apskaičiuoti naudojant penktąją formulę. Pasirodo, x = (-2 ± √64) / 2 = (-2 ± 8) / 2. Tada x 1 = 3, x 2 = - 5.

Ketvirtoji lygtis x 2 + 8 + 3x = 0 paverčiama taip: x 2 + 3x + 8 = 0. Jos diskriminantas lygus šiai reikšmei: -23. Kadangi šis skaičius yra neigiamas, atsakymas į šią užduotį bus toks: „Šaknų nėra“.

Penktąją lygtį 12x + x 2 + 36 = 0 reikia perrašyti taip: x 2 + 12x + 36 = 0. Pritaikius diskriminanto formulę, gaunamas skaičius nulis. Tai reiškia, kad jis turės vieną šaknį, būtent: x = -12/ (2 * 1) = -6.

Šeštoji lygtis (x+1) 2 + x + 1 = (x+1)(x+2) reikalauja transformacijų, kurios susideda iš to, kad reikia pateikti panašius terminus, pirmiausia atidarant skliaustus. Vietoj pirmosios bus tokia išraiška: x 2 + 2x + 1. Po lygybės pasirodys šis įrašas: x 2 + 3x + 2. Suskaičiavus panašius narius, lygtis bus tokia: x 2 - x = 0. Jis tapo nepilnas . Kažkas panašaus jau buvo aptarta šiek tiek aukščiau. To šaknys bus skaičiai 0 ir 1.

Kvadratinės lygtys. Diskriminuojantis. Sprendimas, pavyzdžiai.

Dėmesio!
Yra papildomų
Specialiajame 555 skyriuje nurodytos medžiagos.
Tiems, kurie labai „nelabai...“
Ir tiems, kurie „labai...“)

Kvadratinių lygčių tipai

Kas yra kvadratinė lygtis? Kaip tai atrodo? Per terminą kvadratinė lygtis raktinis žodis yra "kvadratas". Tai reiškia, kad lygtyje Būtinai turi būti x kvadratas. Be jo, lygtyje gali būti (arba gali nebūti!) yra tik X (iki pirmosios laipsnio) ir tik skaičius (laisvas narys). Ir neturėtų būti X iki dviejų.

Matematine prasme kvadratinė lygtis yra tokios formos lygtis:

Čia a, b ir c- kai kurie skaičiai. b ir c- Visiškai bet koks, bet A– nieko kito nei nulis. Pavyzdžiui:

Čia A =1; b = 3; c = -4

Čia A =2; b = -0,5; c = 2,2

Čia A =-3; b = 6; c = -18

Na, supranti...

Šiose kvadratinėse lygtyse kairėje yra pilna komplektacija nariai. X kvadratu su koeficientu A, x iki pirmojo laipsnio su koeficientu b Ir laisvas narys s.

Tokios kvadratinės lygtys vadinamos pilnas.

Ir jeigu b= 0, ką mes gauname? Mes turime X išnyks iki pirmojo laipsnio. Taip atsitinka padauginus iš nulio.) Pasirodo, pavyzdžiui:

5x 2 -25 = 0,

2x 2 -6x = 0,

-x 2 +4x=0

Ir taip toliau. Ir jei abu koeficientai b Ir c yra lygūs nuliui, tada dar paprasčiau:

2x2 =0,

-0,3x2 =0

Tokios lygtys, kuriose kažko trūksta, vadinamos nepilnos kvadratinės lygtys. Tai gana logiška.) Atkreipkite dėmesį, kad x kvadratas yra visose lygtyse.

Beje, kodėl A negali būti lygus nuliui? Ir vietoj to pakeičiate A nulis.) Mūsų X kvadratas išnyks! Lygtis taps tiesinė. O sprendimas visai kitoks...

Tai visi pagrindiniai kvadratinių lygčių tipai. Pilnas ir neišsamus.

Kvadratinių lygčių sprendimas.

Pilnų kvadratinių lygčių sprendimas.

Kvadratines lygtis nesunku išspręsti. Pagal formules ir aiškias, paprastas taisykles. Pirmajame etape reikia duotą lygtį paversti standartine forma, t.y. į formą:

Jei lygtis jums jau pateikta šioje formoje, jums nereikia atlikti pirmojo etapo.) Svarbiausia yra teisingai nustatyti visus koeficientus, A, b Ir c.

Kvadratinės lygties šaknų radimo formulė atrodo taip:

Išraiška po šaknies ženklu vadinama diskriminuojantis. Bet daugiau apie jį žemiau. Kaip matote, norėdami rasti X, naudojame tik a, b ir c. Tie. koeficientai iš kvadratinės lygties. Tiesiog atsargiai pakeiskite vertybes a, b ir c Skaičiuojame pagal šią formulę. Pakeiskime su savo ženklais! Pavyzdžiui, lygtyje:

A =1; b = 3; c= -4. Taigi užrašome:

Pavyzdys beveik išspręstas:

Tai yra atsakymas.

Viskas labai paprasta. Ir ką, jūs manote, kad neįmanoma suklysti? Na taip, kaip...

Dažniausios klaidos yra painiojimas su ženklų reikšmėmis a, b ir c. Arba, tiksliau, ne su jų ženklais (kur susipainioti?), o su neigiamų verčių pakeitimu į šaknų skaičiavimo formulę. Čia padeda išsamus formulės įrašymas su konkrečiais skaičiais. Jei kyla problemų su skaičiavimais, padaryti, kad!

Tarkime, kad turime išspręsti šį pavyzdį:

Čia a = -6; b = -5; c = -1

Tarkime, žinote, kad retai sulaukiate atsakymų pirmą kartą.

Na, netingėk. Tai užtruks apie 30 sekundžių parašyti papildomą eilutę ir klaidų skaičių smarkiai sumažės. Taigi rašome išsamiai, su visais skliaustais ir ženklais:

Atrodo neįtikėtinai sunku taip kruopščiai parašyti. Bet taip tik atrodo. Pabandyk. Na, arba pasirinkti. Kas geriau, greitas ar teisingas? Be to, aš tave pradžiuginsiu. Po kurio laiko nebereikės visko taip kruopščiai surašyti. Tai pasirodys savaime. Ypač jei naudojate toliau aprašytus praktinius metodus. Šis blogas pavyzdys su daugybe minusų gali būti išspręstas lengvai ir be klaidų!

Tačiau dažnai kvadratinės lygtys atrodo šiek tiek kitaip. Pavyzdžiui, taip:

Ar atpažinote?) Taip! Tai nepilnos kvadratinės lygtys.

Nepilniųjų kvadratinių lygčių sprendimas.

Jas taip pat galima išspręsti naudojant bendrą formulę. Jums tereikia teisingai suprasti, kam jie čia prilygsta. a, b ir c.

Ar išsiaiškinote? Pirmame pavyzdyje a = 1; b = -4; A c? Jo visai nėra! Na taip, tai tiesa. Matematikoje tai reiškia c = 0 ! Tai viskas. Vietoj to formulėje pakeiskite nulį c, ir mums pasiseks. Tas pats su antruoju pavyzdžiu. Tik pas mus čia nėra nulio Su, A b !

Tačiau nepilnas kvadratines lygtis galima išspręsti daug paprasčiau. Be jokių formulių. Panagrinėkime pirmąją nepilną lygtį. Ką galite padaryti kairėje pusėje? Galite ištraukti X iš skliaustų! Išimkime.

Ir kas iš šito? Ir tai, kad sandauga lygi nuliui tada ir tik tada, kai kuris nors iš veiksnių yra lygus nuliui! Netikite manimi? Gerai, tada sugalvokite du ne nuo nulio skaičius, kuriuos padauginus bus gautas nulis!
Neveikia? Viskas...
Todėl drąsiai galime rašyti: x 1 = 0, x 2 = 4.

Visi. Tai bus mūsų lygties šaknys. Tinka abu. Pakeitus bet kurį iš jų į pradinę lygtį, gauname teisingą tapatybę 0 = 0. Kaip matote, sprendimas yra daug paprastesnis nei naudojant bendrą formulę. Beje, atkreipsiu dėmesį, kuris X bus pirmasis, o kuris antras – absoliučiai abejingas. Patogu rašyti eilės tvarka, x 1- kas mažesnis ir x 2- kas didesnis.

Antrąją lygtį taip pat galima išspręsti paprastai. Perkelkite 9 į dešinę pusę. Mes gauname:

Belieka išgauti šaknį iš 9, ir viskas. Tai paaiškės:

Taip pat dvi šaknys . x 1 = -3, x 2 = 3.

Taip išsprendžiamos visos nepilnos kvadratinės lygtys. Arba įdėdami X iš skliaustų arba tiesiog perkeldami skaičių į dešinę ir ištraukdami šaknį.
Šiuos metodus labai sunku supainioti. Vien dėl to, kad pirmu atveju teks ištraukti X šaknį, kuri kažkaip nesuprantama, o antruoju atveju nėra ką ištraukti iš skliaustų...

Diskriminuojantis. Diskriminacinė formulė.

Magiškas žodis diskriminuojantis ! Retas gimnazistas nėra girdėjęs šio žodžio! Frazė „sprendžiame per diskriminantą“ įkvepia pasitikėjimo ir užtikrintumo. Nes nereikia tikėtis gudrybių iš diskriminanto! Juo naudotis paprasta ir be problemų.) Primenu bendriausią sprendimo formulę bet koks kvadratinės lygtys:

Išraiška po šaknies ženklu vadinama diskriminantu. Paprastai diskriminantas žymimas raide D. Diskriminacinė formulė:

D = b 2 - 4ac

Ir kuo ši išraiška tokio nuostabaus? Kodėl jis nusipelnė ypatingo pavadinimo? Ką diskriminanto prasmė? Po visko -b, arba 2ašioje formulėje jie specialiai nieko nevadina... Raidės ir raidės.

Štai toks dalykas. Sprendžiant kvadratinę lygtį naudojant šią formulę, tai įmanoma tik trys atvejai.

1. Diskriminantas yra teigiamas. Tai reiškia, kad iš jo galima išgauti šaknį. Ar šaknis išgaunama gerai, ar prastai – kitas klausimas. Svarbu tai, kas išgaunama iš esmės. Tada jūsų kvadratinė lygtis turi dvi šaknis. Du skirtingi sprendimai.

2. Diskriminantas lygus nuliui. Tada turėsite vieną sprendimą. Kadangi nulio pridėjimas ar atėmimas skaitiklyje nieko nekeičia. Griežtai kalbant, tai ne viena šaknis, o du vienodi. Tačiau supaprastintoje versijoje įprasta kalbėti apie vienas sprendimas.

3. Diskriminantas yra neigiamas. Neigiamojo skaičiaus kvadratinė šaknis negali būti paimta. Na, gerai. Tai reiškia, kad sprendimų nėra.

Tiesą sakant, tiesiog sprendžiant kvadratines lygtis, diskriminanto sąvoka tikrai nereikalinga. Mes pakeičiame koeficientų reikšmes į formulę ir suskaičiuojame. Ten viskas vyksta savaime, dvi šaknys, viena ir nė viena. Tačiau sprendžiant sudėtingesnes užduotis, be žinių diskriminanto reikšmė ir formulė nepakankamai. Ypač lygtyse su parametrais. Tokios lygtys yra akrobatinis skraidis valstybiniam egzaminui ir vieningam valstybiniam egzaminui!)

Taigi, kaip išspręsti kvadratines lygtis per diskriminantą, kurį prisiminėte. Arba išmokote, o tai irgi nėra blogai.) Mokate teisingai nustatyti a, b ir c. Ar žinai kaip? dėmesingai pakeiskite juos į šaknies formulę ir dėmesingai suskaičiuok rezultatą. Jūs suprantate, kad pagrindinis žodis čia yra dėmesingai?

Dabar atkreipkite dėmesį į praktinius metodus, kurie žymiai sumažina klaidų skaičių. Tie patys, kurie dėl neatidumo... Dėl ko vėliau tampa skaudu ir įžeidžiama...

Pirmas susitikimas . Nebūkite tingus prieš išspręsdami kvadratinę lygtį ir įveskite ją į standartinę formą. Ką tai reiškia?
Tarkime, kad po visų transformacijų gausite tokią lygtį:

Neskubėkite rašyti šaknies formulės! Beveik neabejotinai susimaišysite šansus a, b ir c. Teisingai sukonstruokite pavyzdį. Pirma, X kvadratas, tada be kvadrato, tada laisvas terminas. Kaip šitas:

Ir vėl, neskubėkite! Minusas prieš X kvadratą gali jus tikrai nuliūdinti. Lengva pamiršti... Atsikratykite minuso. Kaip? Taip, kaip mokyta ankstesnėje temoje! Turime padauginti visą lygtį iš -1. Mes gauname:

Bet dabar galite drąsiai užsirašyti šaknų formulę, apskaičiuoti diskriminantą ir baigti spręsti pavyzdį. Spręskite patys. Dabar turėtumėte turėti šaknis 2 ir -1.

Priėmimas antras. Patikrinkite šaknis! Pagal Vietos teoremą. Nebijok, aš viską paaiškinsiu! Tikrinama paskutinis dalykas lygtis. Tie. ta, kurią naudojome užrašydami šaknies formulę. Jei (kaip šiame pavyzdyje) koeficientas a = 1, patikrinti šaknis lengva. Užtenka juos padauginti. Rezultatas turėtų būti nemokamas narys, t.y. mūsų atveju -2. Atkreipkite dėmesį, ne 2, o -2! Laisvas narys su savo ženklu . Jei nepasiseka, vadinasi, jau kažkur susisukote. Ieškokite klaidos.

Jei tai veikia, turite pridėti šaknis. Paskutinis ir paskutinis patikrinimas. Koeficientas turėtų būti b Su priešingas pažįstamas. Mūsų atveju -1+2 = +1. Koeficientas b, kuris yra prieš X, yra lygus -1. Taigi, viskas teisinga!
Gaila, kad tai taip paprasta tik pavyzdžiams, kur x kvadratas yra grynas, su koeficientu a = 1. Bet bent jau patikrinkite tokias lygtis! Klaidų bus vis mažiau.

Trečias priėmimas . Jei jūsų lygtis turi trupmenų koeficientus, atsikratykite trupmenų! Padauginkite lygtį iš bendro vardiklio, kaip aprašyta pamokoje „Kaip išspręsti lygtis? Tapatybės transformacijos“. Dirbant su trupmenomis, klaidos kažkodėl šliaužia...

Beje, blogą pavyzdį pažadėjau supaprastinti su krūva minusų. Prašau! Štai jis.

Kad nesusipainiotume su minusais, lygtį padauginame iš -1. Mes gauname:

Tai viskas! Spręsti yra vienas malonumas!

Taigi, apibendrinkime temą.

Praktiniai patarimai:

1. Prieš spręsdami kvadratinę lygtį įvedame į standartinę formą ir ją sudarome Teisingai.

2. Jei prieš X kvadratą yra neigiamas koeficientas, jį pašaliname visą lygtį padauginę iš -1.

3. Jei koeficientai trupmeniniai, tai trupmenas eliminuojame padauginę visą lygtį iš atitinkamo koeficiento.

4. Jei x kvadratas yra grynas, jo koeficientas lygus vienetui, sprendinį galima nesunkiai patikrinti naudojant Vietos teoremą. Daryk!

Dabar galime nuspręsti.)

Išspręskite lygtis:

8x 2 - 6x + 1 = 0

x 2 + 3x + 8 = 0

x 2 - 4x + 4 = 0

(x+1) 2 + x + 1 = (x+1) (x+2)

Atsakymai (netvarkingai):

x 1 = 0
x 2 = 5

x 1,2 =2

x 1 = 2
x 2 = -0,5

x – bet koks skaičius

x 1 = -3
x 2 = 3

jokių sprendimų

x 1 = 0,25
x 2 = 0,5

Ar viskas tinka? Puiku! Kvadratinės lygtys nėra jūsų galvos skausmas. Pirmieji trys veikė, o kiti ne? Tada problema yra ne su kvadratinėmis lygtimis. Problema yra identiškose lygčių transformacijose. Pažiūrėk nuorodą, tai naudinga.

Ne visai pavyksta? O gal visai nesiseka? Tada jums padės 555 skyrius. Visi šie pavyzdžiai yra suskirstyti. Parodyta pagrindinis klaidos sprendime. Žinoma, kalbame ir apie identiškų transformacijų panaudojimą sprendžiant įvairias lygtis. Labai padeda!

Jei jums patinka ši svetainė...

Beje, turiu jums dar keletą įdomių svetainių.)

Galite praktikuotis spręsdami pavyzdžius ir sužinoti savo lygį. Testavimas su momentiniu patvirtinimu. Mokykimės – su susidomėjimu!)

Galite susipažinti su funkcijomis ir išvestinėmis.

Tiesiog. Pagal formules ir aiškias, paprastas taisykles. Pirmajame etape

reikia duotą lygtį suvesti į standartinę formą, t.y. į formą:

Jei lygtis jums jau pateikta šioje formoje, jums nereikia atlikti pirmojo etapo. Svarbiausia tai padaryti teisingai

nustatyti visus koeficientus, A, b Ir c.

Kvadratinės lygties šaknų radimo formulė.

Išraiška po šaknies ženklu vadinama diskriminuojantis . Kaip matote, norėdami rasti X, mes

mes naudojame tik a, b ir c. Tie. koeficientai nuo kvadratinė lygtis. Tiesiog atsargiai nustatykite

vertybes a, b ir c Skaičiuojame pagal šią formulę. Mes pakeičiame su ženklai!

Pavyzdžiui, lygtyje:

A =1; b = 3; c = -4.

Pakeičiame reikšmes ir rašome:

Pavyzdys beveik išspręstas:

Tai yra atsakymas.

Dažniausios klaidos yra painiojimas su ženklų reikšmėmis a, b Ir Su. Tiksliau, su pakeitimu

neigiamas vertes į šaknų skaičiavimo formulę. Čia į pagalbą ateina išsamus formulės įrašas

su konkrečiais skaičiais. Jei turite problemų su skaičiavimais, padarykite tai!

Tarkime, kad turime išspręsti šį pavyzdį:

Čia a = -6; b = -5; c = -1

Viską aprašome išsamiai, kruopščiai, nieko nepraleisdami su visais ženklais ir skliausteliuose:

Kvadratinės lygtys dažnai atrodo šiek tiek kitaip. Pavyzdžiui, taip:

Dabar atkreipkite dėmesį į praktinius metodus, kurie žymiai sumažina klaidų skaičių.

Pirmas susitikimas. Nebūk tingus anksčiau sprendžiant kvadratinę lygtį suteikite jį į standartinę formą.

Ką tai reiškia?

Tarkime, kad po visų transformacijų gausite tokią lygtį:

Neskubėkite rašyti šaknies formulės! Beveik neabejotinai susimaišysite šansus a, b ir c.

Teisingai sukonstruokite pavyzdį. Pirma, X kvadratas, tada be kvadrato, tada laisvas terminas. Kaip šitas:

Atsikratykite minuso. Kaip? Turime padauginti visą lygtį iš -1. Mes gauname:

Bet dabar galite drąsiai užsirašyti šaknų formulę, apskaičiuoti diskriminantą ir baigti spręsti pavyzdį.

Spręskite patys. Dabar turėtumėte turėti šaknis 2 ir -1.

Priėmimas antras. Patikrinkite šaknis! Autorius Vietos teorema.

Išspręsti pateiktas kvadratines lygtis, t.y. jei koeficientas

x 2 +bx+c=0,

Tadax 1 x 2 =c

x 1 +x 2 =−b

Pilnai kvadratinei lygčiai, kurioje a≠1:

x 2+bx+c=0,

padalykite visą lygtį iš A:

Kur x 1 Ir x 2 – lygties šaknys.

Trečias priėmimas. Jei jūsų lygtis turi trupmenų koeficientus, atsikratykite trupmenų! Padauginti

lygtis su bendru vardikliu.

Išvada. Praktiniai patarimai:

1. Prieš spręsdami kvadratinę lygtį įvedame į standartinę formą ir ją sudarome Teisingai.

2. Jei prieš X kvadratą yra neigiamas koeficientas, jį pašaliname viską padaugindami

lygtys -1.

3. Jei koeficientai yra trupmeniniai, pašaliname trupmenas, padauginus visą lygtį iš atitinkamos

veiksnys.

4. Jei x kvadratas yra grynas, jo koeficientas lygus vienetui, sprendinį galima nesunkiai patikrinti pagal

Tęsiant temą „Lygčių sprendimas“, šio straipsnio medžiaga supažindins su kvadratinėmis lygtimis.

Pažvelkime į viską detaliai: kvadratinės lygties esmę ir žymėjimą, apibrėžkime lydinčius terminus, išanalizuokime nepilnų ir pilnųjų lygčių sprendimo schemą, susipažinkime su šaknų ir diskriminanto formule, nustatysime šaknų ir koeficientų ryšius, ir, žinoma, pateiksime vaizdinį praktinių pavyzdžių sprendimą.

Yandex.RTB R-A-339285-1

Kvadratinė lygtis, jos rūšys

1 apibrėžimas

Kvadratinė lygtis yra lygtis, parašyta kaip a x 2 + b x + c = 0, Kur x– kintamasis, a , b ir c– kai kurie skaičiai, tuo tarpu a nėra nulis.

Dažnai kvadratinės lygtys taip pat vadinamos antrojo laipsnio lygtimis, nes iš esmės kvadratinė lygtis yra antrojo laipsnio algebrinė lygtis.

Pateikiame pavyzdį, iliustruojantį pateiktą apibrėžimą: 9 x 2 + 16 x + 2 = 0 ; 7, 5 x 2 + 3, 1 x + 0, 11 = 0 ir kt. Tai yra kvadratinės lygtys.

2 apibrėžimas

Skaičiai a, b ir c yra kvadratinės lygties koeficientai a x 2 + b x + c = 0, o koeficientas a vadinamas pirmuoju, arba vyresniuoju, arba koeficientu x 2, b – antruoju koeficientu, arba koeficientu at x, A c vadinamas laisvuoju nariu.

Pavyzdžiui, kvadratinėje lygtyje 6 x 2 - 2 x - 11 = 0 pirmaujantis koeficientas yra 6, antrasis koeficientas yra − 2 , o laisvasis terminas lygus − 11 . Atkreipkime dėmesį į tai, kad kai koeficientai b ir (arba) c yra neigiami, tada naudojama trumpoji formos forma 6 x 2 - 2 x - 11 = 0, bet ne 6 x 2 + (− 2) x + (− 11) = 0.

Išsiaiškinkime ir šį aspektą: jei koeficientai a ir/arba b lygus 1 arba − 1 , tada jie gali nedalyvauti rašant kvadratinę lygtį, o tai paaiškinama nurodytų skaitinių koeficientų rašymo ypatumais. Pavyzdžiui, kvadratinėje lygtyje y 2 − y + 7 = 0 pirmaujantis koeficientas yra 1, o antrasis koeficientas yra − 1 .

Sumažintos ir neredukuotos kvadratinės lygtys

Remiantis pirmojo koeficiento reikšme, kvadratinės lygtys skirstomos į redukuotas ir neredukuotas.

3 apibrėžimas

Sumažinta kvadratinė lygtis yra kvadratinė lygtis, kurios pagrindinis koeficientas yra 1. Kitoms pirmaujančio koeficiento reikšmėms kvadratinė lygtis nesumažinama.

Pateikiame pavyzdžius: kvadratinės lygtys x 2 − 4 · x + 3 = 0, x 2 − x − 4 5 = 0 sumažinamos, kurių kiekvienoje pirmaujantis koeficientas yra 1.

9 x 2 − x − 2 = 0- nesumažintą kvadratinę lygtį, kur pirmasis koeficientas skiriasi nuo 1 .

Bet kurią nesumažintą kvadratinę lygtį galima paversti redukuota lygtimi, padalijus abi puses iš pirmojo koeficiento (ekvivalentinė transformacija). Transformuota lygtis turės tokias pačias šaknis kaip ir duota neredukuota lygtis arba neturės šaknų.

Konkretaus pavyzdžio svarstymas leis mums aiškiai parodyti perėjimą nuo neredukuotos kvadratinės lygties prie redukuotos.

1 pavyzdys

Duota lygtis 6 x 2 + 18 x − 7 = 0 . Būtina paversti pradinę lygtį į sumažintą formą.

Sprendimas

Pagal aukščiau pateiktą schemą abi pradinės lygties puses padalijame iš pirmaujančio koeficiento 6. Tada gauname: (6 x 2 + 18 x – 7) : 3 = 0:3, ir tai yra tas pats, kas: (6 x 2) : 3 + (18 x) : 3 - 7: 3 = 0 ir toliau: (6: 6) x 2 + (18: 6) x − 7: 6 = 0. Iš čia: x 2 + 3 x - 1 1 6 = 0 . Taigi gaunama lygtis, lygiavertė duotajai.

Atsakymas: x 2 + 3 x - 1 1 6 = 0 .

Pilnos ir nepilnos kvadratinės lygtys

Pereikime prie kvadratinės lygties apibrėžimo. Jame mes tai nurodėme a ≠ 0. Panaši sąlyga yra būtina lygčiai a x 2 + b x + c = 0 buvo būtent kvadratas, nes val a = 0 ji iš esmės virsta tiesine lygtimi b x + c = 0.

Tuo atveju, kai koeficientai b Ir c yra lygūs nuliui (tai įmanoma tiek atskirai, tiek kartu), kvadratinė lygtis vadinama nepilna.

4 apibrėžimas

Nebaigta kvadratinė lygtis- tokia kvadratinė lygtis a x 2 + b x + c = 0, kur bent vienas iš koeficientų b Ir c(arba abu) yra nulis.

Pilna kvadratinė lygtis– kvadratinė lygtis, kurioje visi skaitiniai koeficientai nėra lygūs nuliui.

Aptarkime, kodėl kvadratinių lygčių tipams suteikiami būtent tokie pavadinimai.

Kai b = 0, kvadratinė lygtis įgauna formą a x 2 + 0 x + c = 0, kuris yra toks pat kaip a x 2 + c = 0. At c = 0 kvadratinė lygtis, parašyta kaip a x 2 + b x + 0 = 0, kuris yra lygiavertis a x 2 + b x = 0. At b = 0 Ir c = 0 lygtis įgaus formą a x 2 = 0. Mūsų gautos lygtys skiriasi nuo pilnosios kvadratinės lygties tuo, kad jų kairėje pusėje nėra nei termino su kintamuoju x, nei laisvojo termino, nei abiejų. Tiesą sakant, šis faktas davė pavadinimą tokio tipo lygtims - neišsami.

Pavyzdžiui, x 2 + 3 x + 4 = 0 ir − 7 x 2 − 2 x + 1, 3 = 0 yra pilnos kvadratinės lygtys; x 2 = 0, − 5 x 2 = 0; 11 x 2 + 2 = 0, − x 2 − 6 x = 0 – nepilnos kvadratinės lygtys.

Nepilniųjų kvadratinių lygčių sprendimas

Aukščiau pateiktas apibrėžimas leidžia atskirti šiuos nepilnų kvadratinių lygčių tipus:

  • a x 2 = 0, ši lygtis atitinka koeficientus b = 0 ir c = 0;
  • a · x 2 + c = 0, kai b = 0;
  • a · x 2 + b · x = 0, kai c = 0.

Panagrinėkime nuosekliai kiekvienos rūšies nepilnos kvadratinės lygties sprendinį.

Lygties a x 2 =0 sprendimas

Kaip minėta aukščiau, ši lygtis atitinka koeficientus b Ir c, lygus nuliui. Lygtis a x 2 = 0 galima konvertuoti į lygiavertę lygtį x 2 = 0, kurį gauname padalydami abi pradinės lygties puses iš skaičiaus a, nelygu nuliui. Akivaizdus faktas yra tai, kad lygties šaknis x 2 = 0 tai yra nulis, nes 0 2 = 0 . Ši lygtis neturi kitų šaknų, tai galima paaiškinti laipsnio savybėmis: bet kuriam skaičiui p, nelygus nuliui, nelygybė yra teisinga p 2 > 0, iš ko išplaukia, kad kada p ≠ 0 lygybė p 2 = 0 niekada nebus pasiektas.

5 apibrėžimas

Taigi nepilnai kvadratinei lygčiai a x 2 = 0 yra viena šaknis x = 0.

2 pavyzdys

Pavyzdžiui, išspręskime nepilną kvadratinę lygtį − 3 x 2 = 0. Tai yra lygiavertė lygčiai x 2 = 0, vienintelė jo šaknis yra x = 0, tada pradinė lygtis turi vieną šaknį – nulį.

Trumpai tariant, sprendimas parašytas taip:

− 3 x 2 = 0, x 2 = 0, x = 0.

Išspręskite lygtį a x 2 + c = 0

Toliau eilėje yra nepilnų kvadratinių lygčių sprendimas, kur b = 0, c ≠ 0, ty formos lygtys a x 2 + c = 0. Transformuokime šią lygtį perkeldami terminą iš vienos lygties pusės į kitą, pakeisdami ženklą į priešingą ir padalydami abi lygties puses iš skaičiaus, kuris nėra lygus nuliui:

  • perkėlimas cį dešinę pusę, kuri pateikia lygtį a x 2 = − c;
  • padalykite abi lygties puses iš a, gauname x = - c a .

Mūsų transformacijos yra atitinkamai lygiavertės, gauta lygtis taip pat yra lygiavertė pradinei, ir šis faktas leidžia daryti išvadas apie lygties šaknis. Iš to, kokios yra vertybės a Ir c išraiškos reikšmė - c priklauso: ji gali turėti minuso ženklą (pavyzdžiui, jei a = 1 Ir c = 2, tada - c a = - 2 1 = - 2) arba pliuso ženklas (pavyzdžiui, jei a = – 2 Ir c = 6, tada - c a = - 6 - 2 = 3); tai nėra nulis, nes c ≠ 0. Išsamiau pakalbėkime apie situacijas, kai - c a< 0 и - c a > 0 .

Tuo atveju, kai - c a< 0 , уравнение x 2 = - c a не будет иметь корней. Утверждая это, мы опираемся на то, что квадратом любого числа является число неотрицательное. Из сказанного следует, что при - c a < 0 ни для какого числа p lygybė p 2 = - c a negali būti teisinga.

Viskas yra kitaip, kai - c a > 0: prisiminkite kvadratinę šaknį ir taps akivaizdu, kad lygties x 2 = - c a šaknis bus skaičius - c a, nes - c a 2 = - c a. Nesunku suprasti, kad skaičius - - c a yra ir lygties x 2 = - c a šaknis: iš tiesų, - - c a 2 = - c a.

Lygtis neturės kitų šaknų. Tai galime įrodyti naudodami prieštaravimo metodą. Pirmiausia apibrėžkime aukščiau rastų šaknų žymes kaip x 1 Ir − x 1. Tarkime, kad lygtis x 2 = - c a taip pat turi šaknį x 2, kuris skiriasi nuo šaknų x 1 Ir − x 1. Mes tai žinome pakeisdami į lygtį x jos šaknis, lygtį paverčiame teisinga skaitine lygybe.

Dėl x 1 Ir − x 1 rašome: x 1 2 = - c a , o už x 2- x 2 2 = - c a . Remdamiesi skaitinių lygybių savybėmis, vieną teisingą lygybės narį atimame iš kito, kas duos: x 1 2 − x 2 2 = 0. Naudojame operacijų su skaičiais savybes, kad perrašytume paskutinę lygybę kaip (x 1 - x 2) · (x 1 + x 2) = 0. Yra žinoma, kad dviejų skaičių sandauga yra nulis tada ir tik tada, kai bent vienas iš skaičių yra lygus nuliui. Iš to, kas išdėstyta aukščiau, išplaukia, kad x 1 − x 2 = 0 ir/arba x 1 + x 2 = 0, kuris yra tas pats x 2 = x 1 ir/arba x 2 = − x 1. Iškilo akivaizdus prieštaravimas, nes iš pradžių buvo sutarta, kad lygties šaknis x 2 skiriasi nuo x 1 Ir − x 1. Taigi, mes įrodėme, kad lygtis neturi kitų šaknų, išskyrus x = - c a ir x = - - c a.

Apibendrinkime visus aukščiau pateiktus argumentus.

6 apibrėžimas

Nebaigta kvadratinė lygtis a x 2 + c = 0 yra lygiavertis lygčiai x 2 = - c a, kuri:

  • neturės šaknų ties - c a< 0 ;
  • turės dvi šaknis x = - c a ir x = - - c a, kai - c a > 0.

Pateiksime lygčių sprendimo pavyzdžių a x 2 + c = 0.

3 pavyzdys

Duota kvadratinė lygtis 9 x 2 + 7 = 0. Būtina rasti sprendimą.

Sprendimas

Perkelkime laisvąjį terminą į dešinę lygties pusę, tada lygtis įgaus formą 9 x 2 = – 7.
Abi gautos lygties puses padalinkime iš 9 , gauname x 2 = - 7 9 . Dešinėje pusėje matome skaičių su minuso ženklu, o tai reiškia: duotoji lygtis neturi šaknų. Tada pradinė nepilna kvadratinė lygtis 9 x 2 + 7 = 0 neturės šaknų.

Atsakymas: lygtis 9 x 2 + 7 = 0 neturi šaknų.

4 pavyzdys

Reikia išspręsti lygtį − x 2 + 36 = 0.

Sprendimas

Perkelkime 36 į dešinę pusę: − x 2 = − 36.
Abi dalis padalinkime iš − 1 , mes gauname x 2 = 36. Dešinėje pusėje yra teigiamas skaičius, iš kurio galime daryti išvadą x = 36 arba x = - 36 .
Išskirkime šaknį ir užrašykime galutinį rezultatą: nepilną kvadratinę lygtį − x 2 + 36 = 0 turi dvi šaknis x = 6 arba x = – 6.

Atsakymas: x = 6 arba x = – 6.

Lygties a x 2 +b x=0 sprendimas

Panagrinėkime trečiojo tipo nepilnas kvadratines lygtis, kai c = 0. Rasti nepilnos kvadratinės lygties sprendimą a x 2 + b x = 0, naudosime faktorizavimo metodą. Paskaičiuokime daugianarį, esantį kairėje lygties pusėje, išimdami bendrą koeficientą iš skliaustų x. Šis žingsnis leis originalią nepilną kvadratinę lygtį paversti jos ekvivalentu x (a x + b) = 0. Ir ši lygtis, savo ruožtu, yra lygiavertė lygčių rinkiniui x = 0 Ir a x + b = 0. Lygtis a x + b = 0 linijinis, o jo šaknis: x = − b a.

7 apibrėžimas

Taigi nepilna kvadratinė lygtis a x 2 + b x = 0 turės dvi šaknis x = 0 Ir x = − b a.

Sustiprinkime medžiagą pavyzdžiu.

5 pavyzdys

Būtina rasti lygties 2 3 · x 2 - 2 2 7 · x = 0 sprendinį.

Sprendimas

Išimsime x už skliaustų gauname lygtį x · 2 3 · x - 2 2 7 = 0 . Ši lygtis yra lygiavertė lygtims x = 0 ir 2 3 x - 2 2 7 = 0. Dabar turėtumėte išspręsti gautą tiesinę lygtį: 2 3 · x = 2 2 7, x = 2 2 7 2 3.

Trumpai parašykite lygties sprendimą taip:

2 3 x 2 - 2 2 7 x = 0 x 2 3 x - 2 2 7 = 0

x = 0 arba 2 3 x - 2 2 7 = 0

x = 0 arba x = 3 3 7

Atsakymas: x = 0, x = 3 3 7.

Diskriminantas, kvadratinės lygties šaknų formulė

Norėdami rasti kvadratinių lygčių sprendimus, yra šaknies formulė:

8 apibrėžimas

x = - b ± D 2 · a, kur D = b 2 − 4 a c– vadinamasis kvadratinės lygties diskriminantas.

Rašymas x = - b ± D 2 · a iš esmės reiškia, kad x 1 = - b + D 2 · a, x 2 = - b - D 2 · a.

Būtų naudinga suprasti, kaip ši formulė buvo gauta ir kaip ją pritaikyti.

Kvadratinės lygties šaknų formulės išvedimas

Susidurkime su užduotimi išspręsti kvadratinę lygtį a x 2 + b x + c = 0. Atlikime keletą lygiaverčių transformacijų:

  • padalykite abi lygties puses iš skaičiaus a, skirtingą nuo nulio, gauname tokią kvadratinę lygtį: x 2 + b a · x + c a = 0 ;
  • Pažymime visą kvadratą gautos lygties kairėje:
    x 2 + b a · x + c a = x 2 + 2 · b 2 · a · x + b 2 · a 2 - b 2 · a 2 + c a = = x + b 2 · a 2 - b 2 · a 2 + c a
    Po to lygtis bus tokia: x + b 2 · a 2 - b 2 · a 2 + c a = 0;
  • Dabar galima perkelti paskutinius du narius į dešinę pusę, keičiant ženklą į priešingą, po kurio gauname: x + b 2 · a 2 = b 2 · a 2 - c a ;
  • Galiausiai transformuojame paskutinės lygybės dešinėje parašytą išraišką:
    b 2 · a 2 - c a = b 2 4 · a 2 - c a = b 2 4 · a 2 - 4 · a · c 4 · a 2 = b 2 - 4 · a · c 4 · a 2 .

Taigi gauname lygtį x + b 2 · a 2 = b 2 - 4 · a · c 4 · a 2 , lygiavertę pradinei lygčiai a x 2 + b x + c = 0.

Tokių lygčių sprendimą nagrinėjome ankstesnėse pastraipose (sprendžiant nepilnas kvadratines lygtis). Jau įgyta patirtis leidžia daryti išvadą apie lygties x + b 2 · a 2 = b 2 - 4 · a · c 4 · a 2 šaknis:

  • su b 2 – 4 a c 4 a 2< 0 уравнение не имеет действительных решений;
  • kai b 2 - 4 · a · c 4 · a 2 = 0, lygtis yra x + b 2 · a 2 = 0, tada x + b 2 · a = 0.

Iš čia vienintelė šaknis x = - b 2 · a yra akivaizdi;

  • b 2 - 4 · a · c 4 · a 2 > 0, bus teisinga: x + b 2 · a = b 2 - 4 · a · c 4 · a 2 arba x = b 2 · a - b 2 - 4 · a · c 4 · a 2 , kuris yra toks pat kaip x + - b 2 · a = b 2 - 4 · a · c 4 · a 2 arba x = - b 2 · a - b 2 - 4 · a · c 4 · a 2, t.y. lygtis turi dvi šaknis.

Galima daryti išvadą, kad lygties x + b 2 · a 2 = b 2 - 4 · a · c 4 · a 2 (taigi ir pradinė lygtis) šaknų buvimas ar nebuvimas priklauso nuo išraiškos b ženklo. 2 - 4 · a · c 4 · a 2 parašytas dešinėje pusėje. O šios išraiškos ženklą suteikia skaitiklio ženklas (vardiklis 4 ir 2 visada bus teigiamas), tai yra išraiškos ženklas b 2 − 4 a c. Ši išraiška b 2 − 4 a c pateikiamas pavadinimas - kvadratinės lygties diskriminantas ir raidė D apibrėžiama kaip jo žymėjimas. Čia galite užrašyti diskriminanto esmę – pagal jo reikšmę ir ženklą jie gali padaryti išvadą, ar kvadratinė lygtis turės realias šaknis, o jei taip, koks yra šaknų skaičius – viena ar dvi.

Grįžkime prie lygties x + b 2 · a 2 = b 2 - 4 · a · c 4 · a 2 . Perrašykime jį diskriminantiniu žymėjimu: x + b 2 · a 2 = D 4 · a 2 .

Dar kartą suformuluosime išvadas:

9 apibrėžimas

  • adresu D< 0 lygtis neturi realių šaknų;
  • adresu D=0 lygtis turi vieną šaknį x = - b 2 · a ;
  • adresu D > 0 lygtis turi dvi šaknis: x = - b 2 · a + D 4 · a 2 arba x = - b 2 · a - D 4 · a 2. Remiantis radikalų savybėmis, šias šaknis galima užrašyti tokia forma: x = - b 2 · a + D 2 · a arba - b 2 · a - D 2 · a. Ir, kai atidarome modulius ir suvedame trupmenas į bendrą vardiklį, gauname: x = - b + D 2 · a, x = - b - D 2 · a.

Taigi, mūsų samprotavimų rezultatas buvo kvadratinės lygties šaknų formulės išvedimas:

x = - b + D 2 a, x = - b - D 2 a, diskriminantas D apskaičiuojamas pagal formulę D = b 2 − 4 a c.

Šios formulės leidžia nustatyti abi tikrąsias šaknis, kai diskriminantas yra didesnis už nulį. Kai diskriminantas lygus nuliui, taikant abi formules bus gauta ta pati šaknis kaip vienintelis kvadratinės lygties sprendimas. Tuo atveju, kai diskriminantas yra neigiamas, jei bandysime naudoti kvadratinės šaknies formulę, susidursime su būtinybe paimti neigiamo skaičiaus kvadratinę šaknį, o tai išeis už realiųjų skaičių ribų. Naudojant neigiamą diskriminantą, kvadratinė lygtis neturės realių šaknų, tačiau yra įmanoma sudėtingų konjuguotų šaknų pora, nustatoma pagal tas pačias šaknų formules, kurias gavome.

Kvadratinių lygčių sprendimo naudojant šaknies formules algoritmas

Kvadratinę lygtį galima išspręsti iš karto naudojant šaknies formulę, tačiau tai paprastai daroma, kai reikia rasti sudėtingas šaknis.

Daugeliu atvejų tai reiškia, kad reikia ieškoti ne sudėtingų, o realių kvadratinės lygties šaknų. Tada optimalu, prieš naudojant kvadratinės lygties šaknų formules, pirmiausia nustatyti diskriminantą ir įsitikinti, kad jis nėra neigiamas (kitaip padarysime išvadą, kad lygtis neturi realių šaknų), o tada pradėti skaičiuoti šaknų vertė.

Aukščiau pateiktas samprotavimas leidžia suformuluoti kvadratinės lygties sprendimo algoritmą.

10 apibrėžimas

Norėdami išspręsti kvadratinę lygtį a x 2 + b x + c = 0, būtina:

  • pagal formulę D = b 2 − 4 a c rasti diskriminacinę reikšmę;
  • pas D< 0 сделать вывод об отсутствии у квадратного уравнения действительных корней;
  • jei D = 0, raskite vienintelę lygties šaknį naudodami formulę x = - b 2 · a;
  • jei D > 0, nustatykite dvi realiąsias kvadratinės lygties šaknis naudodami formulę x = - b ± D 2 · a.

Atkreipkite dėmesį, kad kai diskriminantas lygus nuliui, galite naudoti formulę x = - b ± D 2 · a, ji duos tokį patį rezultatą kaip ir formulė x = - b 2 · a.

Pažiūrėkime į pavyzdžius.

Kvadratinių lygčių sprendimo pavyzdžiai

Pateiksime skirtingų diskriminanto verčių pavyzdžių sprendimus.

6 pavyzdys

Turime rasti lygties šaknis x 2 + 2 x - 6 = 0.

Sprendimas

Užrašykime kvadratinės lygties skaitinius koeficientus: a = 1, b = 2 ir c = – 6. Toliau einame pagal algoritmą, t.y. Pradėkime skaičiuoti diskriminantą, kurį pakeisime koeficientais a, b Ir cį diskriminanto formulę: D = b 2 − 4 · a · c = 2 2 − 4 · 1 · (− 6) = 4 + 24 = 28 .

Taigi gauname D > 0, o tai reiškia, kad pradinė lygtis turės dvi realias šaknis.
Norėdami juos rasti, naudojame šaknies formulę x = - b ± D 2 · a ir, pakeitę atitinkamas reikšmes, gauname: x = - 2 ± 28 2 · 1. Supaprastinkime gautą išraišką, išimdami koeficientą iš šaknies ženklo ir sumažindami trupmeną:

x = - 2 ± 2 7 2

x = - 2 + 2 7 2 arba x = - 2 - 2 7 2

x = - 1 + 7 arba x = - 1 - 7

Atsakymas: x = -1 + 7​​​​​, x = -1 - 7.

7 pavyzdys

Būtina išspręsti kvadratinę lygtį − 4 x 2 + 28 x − 49 = 0.

Sprendimas

Apibrėžkime diskriminantą: D = 28 2 − 4 · (− 4) · (− 49) = 784 − 784 = 0. Esant šiai diskriminanto reikšmei, pradinė lygtis turės tik vieną šaknį, nustatytą pagal formulę x = - b 2 · a.

x = - 28 2 (- 4) x = 3,5

Atsakymas: x = 3,5.

8 pavyzdys

Reikia išspręsti lygtį 5 y 2 + 6 y + 2 = 0

Sprendimas

Šios lygties skaitiniai koeficientai bus: a = 5, b = 6 ir c = 2. Norėdami rasti diskriminantą, naudojame šias reikšmes: D = b 2 − 4 · a · c = 6 2 − 4 · 5 · 2 = 36 − 40 = − 4 . Apskaičiuotas diskriminantas yra neigiamas, todėl pradinė kvadratinė lygtis neturi realių šaknų.

Tuo atveju, kai užduotis yra nurodyti sudėtingas šaknis, taikome šaknies formulę, atlikdami veiksmus su kompleksiniais skaičiais:

x = - 6 ± - 4 2 5,

x = - 6 + 2 i 10 arba x = - 6 - 2 i 10,

x = - 3 5 + 1 5 · i arba x = - 3 5 - 1 5 · i.

Atsakymas: nėra tikrų šaknų; kompleksinės šaknys yra tokios: - 3 5 + 1 5 · i, - 3 5 - 1 5 · i.

Mokyklos programoje nėra standartinio reikalavimo ieškoti kompleksinių šaknų, todėl sprendžiant diskriminantą nustačius neigiamą, iš karto užrašomas atsakymas, kad tikrų šaknų nėra.

Net antrojo koeficiento šakninė formulė

Šakninė formulė x = - b ± D 2 · a (D = b 2 − 4 · a · c) leidžia gauti kitą formulę, kompaktiškesnę, leidžiančią rasti kvadratinių lygčių sprendinius su lyginiu x koeficientu ( arba su 2 · n formos koeficientu, pavyzdžiui, 2 3 arba 14 ln 5 = 2 7 ln 5). Parodykime, kaip gaunama ši formulė.

Susidurkime su užduotimi rasti kvadratinės lygties a · x 2 + 2 · n · x + c = 0 sprendimą. Tęsiame pagal algoritmą: nustatome diskriminantą D = (2 n) 2 − 4 a c = 4 n 2 − 4 a c = 4 (n 2 − a c), tada naudojame šaknies formulę:

x = - 2 n ± D 2 a, x = - 2 n ± 4 n 2 - a c 2 a, x = - 2 n ± 2 n 2 - a c 2 a, x = - n ± n 2 - a · c a .

Tegul išraiška n 2 − a · c žymima D 1 (kartais ji žymima D "). Tada nagrinėjamos kvadratinės lygties šaknų formulė su antruoju koeficientu 2 · n bus tokia:

x = - n ± D 1 a, kur D 1 = n 2 − a · c.

Nesunku pastebėti, kad D = 4 · D 1 arba D 1 = D 4. Kitaip tariant, D 1 yra ketvirtadalis diskriminanto. Akivaizdu, kad D 1 ženklas yra toks pat kaip D ženklas, o tai reiškia, kad D 1 ženklas taip pat gali būti kvadratinės lygties šaknų buvimo ar nebuvimo indikatorius.

11 apibrėžimas

Taigi, norint rasti kvadratinės lygties su antruoju 2 n koeficientu sprendimą, būtina:

  • rasti D 1 = n 2 − a · c ;
  • ties D1< 0 сделать вывод, что действительных корней нет;
  • kai D 1 = 0, nustatykite vienintelę lygties šaknį naudodami formulę x = - n a;
  • jei D 1 > 0, nustatykite dvi realiąsias šaknis naudodami formulę x = - n ± D 1 a.

9 pavyzdys

Būtina išspręsti kvadratinę lygtį 5 x 2 − 6 x − 32 = 0.

Sprendimas

Antrąjį duotosios lygties koeficientą galime pavaizduoti kaip 2 · (− 3) . Tada perrašome duotą kvadratinę lygtį į 5 x 2 + 2 (− 3) x − 32 = 0, kur a = 5, n = − 3 ir c = − 32.

Apskaičiuokime ketvirtąją diskriminanto dalį: D 1 = n 2 − a · c = (− 3) 2 − 5 · (− 32) = 9 + 160 = 169. Gauta reikšmė yra teigiama, o tai reiškia, kad lygtis turi dvi realias šaknis. Nustatykime juos naudodami atitinkamą šaknies formulę:

x = - n ± D 1 a, x = - - 3 ± 169 5, x = 3 ± 13 5,

x = 3 + 13 5 arba x = 3 - 13 5

x = 3 1 5 arba x = - 2

Galima būtų atlikti skaičiavimus naudojant įprastą kvadratinės lygties šaknų formulę, tačiau šiuo atveju sprendimas būtų sudėtingesnis.

Atsakymas: x = 3 1 5 arba x = - 2 .

Kvadratinių lygčių formos supaprastinimas

Kartais galima optimizuoti pradinės lygties formą, o tai supaprastins šaknų skaičiavimo procesą.

Pavyzdžiui, kvadratinę lygtį 12 x 2 − 4 x − 7 = 0 yra aiškiai patogiau išspręsti nei 1200 x 2 − 400 x − 700 = 0.

Dažniau kvadratinės lygties formos supaprastinimas atliekamas padauginant arba padalijus abi jos puses iš tam tikro skaičiaus. Pavyzdžiui, aukščiau parodėme supaprastintą lygties 1200 x 2 − 400 x − 700 = 0 vaizdavimą, gautą padalijus abi puses iš 100.

Tokia transformacija galima, kai kvadratinės lygties koeficientai nėra pirminiai skaičiai. Tada mes paprastai padalijame abi lygties puses iš didžiausio bendrojo jos koeficientų absoliučių reikšmių daliklio.

Kaip pavyzdį naudojame kvadratinę lygtį 12 x 2 − 42 x + 48 = 0. Nustatykime jo koeficientų absoliučių verčių GCD: GCD (12, 42, 48) = GCD(GCD (12, 42), 48) = GCD (6, 48) = 6. Abi pradinės kvadratinės lygties puses padalinkime iš 6 ir gausime ekvivalentinę kvadratinę lygtį 2 x 2 − 7 x + 8 = 0.

Padauginę abi kvadratinės lygties puses, paprastai atsikratysite trupmeninių koeficientų. Šiuo atveju jie dauginami iš mažiausio bendro jo koeficientų vardiklių kartotinio. Pavyzdžiui, jei kiekviena kvadratinės lygties dalis 1 6 x 2 + 2 3 x - 3 = 0 padauginama iš LCM (6, 3, 1) = 6, tada ji bus parašyta paprastesne forma x 2 + 4 x − 18 = 0 .

Galiausiai pažymime, kad beveik visada atsikratome minuso ties pirmuoju kvadratinės lygties koeficientu, pakeisdami kiekvieno lygties nario ženklus, o tai pasiekiama padauginus (arba padalijus) abi puses iš −1. Pavyzdžiui, iš kvadratinės lygties − 2 x 2 − 3 x + 7 = 0 galite pereiti prie jos supaprastintos versijos 2 x 2 + 3 x − 7 = 0.

Ryšys tarp šaknų ir koeficientų

Mums jau žinoma kvadratinių lygčių šaknų formulė x = - b ± D 2 · a lygties šaknis išreiškia skaitiniais jos koeficientais. Remdamiesi šia formule, turime galimybę nurodyti kitas priklausomybes tarp šaknų ir koeficientų.

Garsiausios ir taikomos formulės yra Vietos teorema:

x 1 + x 2 = - b a ir x 2 = c a.

Visų pirma, duotoje kvadratinėje lygtyje šaknų suma yra antrasis koeficientas su priešingu ženklu, o šaknų sandauga yra lygi laisvajam nariui. Pavyzdžiui, pažvelgus į kvadratinės lygties 3 x 2 − 7 x + 22 = 0 formą, galima iš karto nustatyti, kad jos šaknų suma yra 7 3, o šaknų sandauga yra 22 3.

Taip pat galite rasti daugybę kitų jungčių tarp kvadratinės lygties šaknų ir koeficientų. Pavyzdžiui, kvadratinės lygties šaknų kvadratų suma gali būti išreikšta koeficientais:

x 1 2 + x 2 2 = (x 1 + x 2) 2 - 2 x 1 x 2 = - b a 2 - 2 c a = b 2 a 2 - 2 c a = b 2 - 2 a c a 2.

Jei tekste pastebėjote klaidą, pažymėkite ją ir paspauskite Ctrl+Enter