20.09.2019

Найти абсциссу точки экстремума функции примеры. Правило исследования функции y=f(x) на экстремум. Исследование функции на возрастание и убывание


Важным понятием в математике является функция. С её помощью можно наглядно представить многие процессы, происходящие в природе, отразить с использованием формул, таблиц и изображений на графике взаимосвязь между определёнными величинами. Примером может служить зависимость давления слоя жидкости на тело от глубины погружения, ускорения - от действия на объект определённой силы, увеличения температуры - от передаваемой энергии и многие другие процессы. Исследование функции предполагает построение графика, выяснение её свойств, области определения и значений, промежутков возрастания и убывания. Важным моментом в данном процессе является нахождение точек экстремума. О том, как правильно это делать, и пойдёт разговор далее.

О самом понятии на конкретном примере

В медицине построение графика функции может рассказать о ходе развития болезни в организме пациента, наглядно отражая его состояние. Предположим, по оси ОХ откладывается время в сутках, а по оси ОУ - температура тела человека. На рисунке хорошо видно, как этот показатель резко поднимается, а потом падает. Нетрудно заметить также особые точки, отражающие моменты, когда функция, ранее возрастая, начинает убывать, и наоборот. Это точки экстремума, то есть критические значения (максимальные и минимальные) в данном случае температуры больного, после которых наступают изменения в его состоянии.

Угол наклона

Легко можно определить по рисунку, как изменяется производная функции. Если прямые линии графика с течением времени идут вверх, то она положительна. И чем они круче, тем большее значение принимает производная, так как растет угол наклона. В периоды убывания эта величина принимает отрицательные значения, в точках экстремума обращаясь в ноль, а график производной в последнем случае рисуется параллельно оси ОХ.

Любой другой процесс следует рассматривать аналогичным образом. Но лучше всего об этом понятии может рассказать перемещение различных тел, наглядно показанное на графиках.

Движение

Предположим, некоторый объект движется по прямой, равномерно набирая скорость. В этот период изменение координаты тела графически представляет собой некую кривую, которую математик назвал бы ветвью параболы. При этом функция постоянно возрастает, так как показатели координаты с каждой секундой изменяются всё быстрей. График скорости демонстрирует поведение производной, значение которой также увеличивается. А значит, движение не имеет критических точек.

Так бы и продолжалось бесконечно долго. Но если тело вдруг решит затормозить, остановиться и начать двигаться в другом направлении? В данном случае показатели координаты начнут уменьшаться. А функция перейдёт критическое значение и из возрастающей превратится в убывающую.

На этом примере снова можно понять, что точки экстремума на графике функции появляются в моменты, когда она перестаёт быть монотонной.

Физический смысл производной

Описанное ранее наглядно показало, что производная по сути является скоростью изменения функции. В данном уточнении и заключён её физический смысл. Точки экстремума - это критические области на графике. Их возможно выяснить и обнаружить, вычислив значение производной, которая оказывается равной нулю.

Существует и другой признак, который является достаточным условием экстремума. Производная в таких местах перегиба меняет свой знак: с «+» на «-» в области максимума и с «-» на «+» в районе минимума.

Движение под влиянием силы притяжения

Представим ещё одну ситуацию. Дети, играя в мяч, бросили его таким образом, что он начал двигаться под углом к горизонту. В начальный момент скорость данного объекта являлась самой большой, но под действием силы тяжести начала уменьшаться, причём с каждой секундой на одну и ту же величину, равную приблизительно 9,8 м/с 2 . Это значение ускорения, возникающего под влиянием земной гравитации при свободном падении. На Луне оно бы было примерно в шесть раз меньше.

Графиком, описывающим перемещение тела, является парабола с ветвями, направленными вниз. Как найти точки экстремума? В данном случае это вершина функции, где скорость тела (мяча) принимает нулевое значение. Производная функции становится равной нулю. При этом направление, а следовательно, и значение скорости, меняется на противоположное. Тело летит вниз с каждой секундой всё быстрее, причём ускоряется на ту же величину - 9,8 м/с 2 .

Вторая производная

В предыдущем случае график модуля скорости рисуется как прямая. Данная линия оказывается сначала направлена вниз, так как значение этой величины постоянно убывает. Достигнув нуля в один из моментов времени, далее показатели этой величины начинают возрастать, а направление графического изображения модуля скорости кардинально меняется. Теперь линия направлена вверх.

Скорость, являясь производной от координаты по времени, тоже имеет критическую точку. В этой области функция, вначале убывая, начинает возрастать. Это место точки экстремума производной функции. В данном случае угол наклона касательной становится равным нулю. А ускорение, являясь второй производной от координаты по времени, меняет знак с «-» на «+». И движение из равнозамедленного становится равноускоренным.

График ускорения

Теперь рассмотрим четыре рисунка. На каждом из них отображён график изменения с течением времени такой физической величины, как ускорение. В случае «А» значение его остаётся положительным и постоянным. Это означает, что скорость тела, как и его координата, постоянно увеличивается. Если представить, что объект будет двигаться таким образом бесконечно долго, функция, отражающая зависимость координаты от времени, окажется постоянно возрастающей. Из этого следует, что она не имеет критических областей. Точки экстремума на графике производной, то есть линейно изменяющейся скорости, также отсутствуют.

То же касается и случая «Б» с положительным и постоянно увеличивающимся ускорением. Правда, графики для координаты и скорости здесь будут несколько сложнее.

Когда ускорение стремится к нулю

Рассматривая рисунок «В», можно наблюдать совсем другую картину, характеризующую движение тела. Скорость его графически будет изображаться параболой с ветвями, направленными вниз. Если продолжить линию, описывающую изменение ускорения до пересечения её с осью ОХ, и дальше, то можно представить, что до этого критического значения, где ускорение окажется равным нулю, скорость объекта будет увеличиваться всё медленнее. Точка экстремума производной от функции координаты окажется как раз в вершине параболы, после чего тело кардинально поменяет характер движения и начнёт двигаться в другом направлении.

В последнем случае, «Г», характер движения точно определить невозможно. Здесь известно только, что ускорение за некоторый рассматриваемый период отсутствует. Значит, объект может оставаться на месте или движение происходит с постоянной скоростью.

Задача на сложение координат

Перейдём к заданиям, которые часто встречаются при изучении алгебры в школе и предлагаются для подготовки к ЕГЭ. На рисунке, который представлен ниже, изображён график функции. Требуется вычислить сумму точек экстремума.

Сделаем это для оси ординат, определив координаты критических областей, где наблюдается изменение характеристик функции. Проще говоря, найдём значения по оси ОХ для точек перегиба, а затем перейдём к сложению полученных членов. По графику очевидно, что они принимают следующие значения: -8; -7 ; -5; -3; -2; 1; 3. В сумме это составляет -21, что и является ответом.

Оптимальное решение

Не стоит объяснять, насколько может оказаться важным в выполнении практических заданий выбор оптимального решения. Ведь путей достижения цели бывает много, а наилучший выход, как правило, - всего один. Это бывает крайне необходимо, к примеру, при конструировании судов, космических кораблей и самолётов, архитектурных сооружений для нахождения оптимальной формы данных рукотворных объектов.

Быстроходность средств передвижения во многом зависит от грамотного сведения к минимуму сопротивления, которое они испытывают при перемещении по воде и воздуху, от перегрузок, возникающих под действием гравитационных сил и многих других показателей. Кораблю на море необходимы такие качества, как устойчивость во время шторма, для речного судна важна минимальная осадка. При расчётах оптимальной конструкции точки экстремума на графике наглядно могут дать представление о наилучшем решении сложной проблемы. Задачи такого плана часто решаются в экономике, в хозяйственных областях, во множестве других жизненных ситуаций.

Из античной истории

Задачи на экстремум занимали даже древних мудрецов. Греческие учёные с успехом разгадали тайну площадей и объёмов путём математических вычислений. Это они первыми поняли, что на плоскости из разнообразных фигур, обладающих одним и тем же периметром, наибольшую площадь всегда имеет круг. Аналогичным образом шар наделён максимальным объёмом среди остальных предметов в пространстве с одинаковой величиной поверхности. Решению подобных задач посвятили себя такие известнейшие личности, как Архимед, Евклид, Аристотель, Аполлоний. Найти точки экстремума прекрасно удавалось Герону, который, прибегнув к расчётам, сооружал хитроумные устройства. К ним относились автоматы, перемещающиеся посредством пара, работающие по тому же принципу насосы и турбины.

Строительство Карфагена

Существует легенда, сюжет которой построен на решении одной из экстремальных задач. Результатом делового подхода, который продемонстрировала финикийская царевна, обратившаяся за помощью к мудрецам, стало строительство Карфагена. Земельный участок для этого древнего и прославленного города подарил Дидоне (так звали правительницу) вождь одного из африканских племён. Площадь надела не показалась ему вначале очень большой, так как по договору должна была покрываться воловьей шкурой. Но царевна повелела своим воинам разрезать её на тонкие полосы и составить из них ремень. Он получился настолько длинным, что охватил участок, где уместился целый город.

Истоки математического анализа

А теперь перенесёмся из античных времён в более позднюю эпоху. Интересно, что к осознанию основ математического анализа подтолкнула Кеплера в XVII веке встреча с продавцом вина. Торговец был настолько сведущ в своей профессии, что легко мог определить объём находящегося в бочке напитка, просто опуская туда железный жгут. Размышляя над подобным курьёзом, знаменитый учёный сумел решить для себя эту дилемму. Оказывается, искусные бочары тех времён наловчились изготавливать сосуды таким образом, чтобы при определённой высоте и радиусе окружности скрепляющих колец они имели максимальную вместимость.

Это стало для Кеплера поводом для дальнейших размышлений. Бочары пришли к оптимальному решению методом долгого поиска, ошибок и новых попыток, передавая свой опыт из поколения в поколение. Но Кеплер хотел ускорить процесс и научиться делать то же самое в короткий срок путём математических вычислений. Все его наработки, подхваченные коллегами, превратились в известные ныне теоремы Ферма и Ньютона - Лейбница.

Задача на нахождение максимальной площади

Представим, что мы имеем проволоку, длина которой равна 50 см. Как составить из неё прямоугольник, обладающий наибольшей площадью?

Начиная решение, следует исходить из простых и известных любому истин. Понятно, что периметр нашей фигуры будет составлять 50 см. Он же складывается из удвоенных длин обеих сторон. Это значит, что, обозначив за «Х» одну из них, другую возможно выразить как (25 - Х).

Отсюда получаем площадь, равную Х(25 - Х). Данное выражение можно представить как функцию, принимающую множество значений. Решение задачи требует найти максимальное из них, а значит, следует узнать точки экстремума.

Для этого находим первую производную и приравниваем её нулю. В результате получается простое уравнение: 25 - 2Х = 0.

Из него мы узнаём, что одна из сторон Х = 12,5.

Следовательно, другая: 25 - 12,5 = 12,5.

Получается, что решением задачи будет квадрат со стороной 12,5 см.

Как найти максимальную скорость

Рассмотрим ещё один пример. Представим, что существует тело, прямолинейное движение которого описывается уравнением S = - t 3 + 9t 2 - 24t - 8, где пройденное расстояние выражается в метрах, а время в секундах. Требуется найти максимальную скорость. Как это сделать? Скачала находим скорость, то есть первую производную.

Получаем уравнение: V = - 3t 2 + 18t - 24. Теперь для решения задачи снова нужно найти точки экстремума. Сделать это необходимо тем же способом, что и в предыдущей задаче. Находим первую производную от скорости и приравниваем её к нулю.

Получаем: - 6t + 18 = 0. Отсюда t = 3 с. Это время, когда скорость тела принимает критическое значение. Подставляем полученное данное в уравнение скорости и получаем: V = 3 м/с.

Но как понять, что это именно максимальная скорость, ведь критическими точками функции могут быть наибольшие или наименьшие её значения? Для проверки необходимо найти вторую производную от скорости. Она выражается числом 6 со знаком минус. Это значит, что найденная точка является максимумом. А в случае положительного значения второй производной был бы минимум. Значит, найденное решение оказалось правильным.

Приведённые в качестве примера задачи являются лишь частью из тех, которые возможно решить, умея находить точки экстремума функции. На самом деле их гораздо больше. А подобные знания открывают перед человеческой цивилизацией неограниченные возможности.

Прежде, чем научиться находить экстремумы функции, необходимо понять, что же такое экстремум. Самое общее определение экстремума гласит, что это употребляемое в математике наименьшее или наибольшее значение функции на определенном множестве числовой линии или графике. В том месте, где находится минимум, появляется экстремум минимума, а там, где максимум – экстремум максимума. Также в такой дисциплине, как математический анализ, выделяют локальные экстремумы функции. Теперь давайте рассмотрим, как найти экстремумы.

Экстремумы в математике относятся к важнейшим характеристикам функции, они показывают её самое большое и самое маленькое значение. Находятся экстремумы преимущественно в критических точках находимых функций. Стоит отметить, что именно в точке экстремума функция кардинально меняет своё направление. Если просчитать производную от точки экстремума, то она, согласно определению, должна быть равна нулю или же вовсе будет отсутствовать. Таким образом, чтобы узнать, как найти экстремум функции, необходимо выполнить две последовательные задачи:

  • найти производную для той функции, которую необходимо определить заданием;
  • найти корни уравнения.

Последовательность нахождения экстремума

  1. Оформите в письменном виде функцию f(x), которая задана. Найдите её производную первого порядка f "(x). То выражение, которое получится, приравняйте к нулю.
  2. Теперь вам предстоит решить то уравнение, которое получилось. Результирующие решения и будут корнями уравнения, а также критическими точками определяемой функции.
  3. Теперь определяем, какими именно критическими точками (максимума или минимума) являются найденные корни. Следующим этапом, после того, как мы узнали, как находить точки экстремума функции, является нахождение второй производной от искомой функции f " (x). Необходимо будет подставить в конкретное неравенство значения найденных критических точек и затем посчитать, что получится. Если произойдет так, что вторая производная окажется больше нуля в критической точке, то ею и будет являться точка минимума, а в противном случае – это будет точка максимума.
  4. Остаётся посчитать значение начальной функции в необходимых точках максимума и минимума функции. Чтобы это сделать, подставляем полученные значения в функцию и рассчитываем. Однако стоит отметить, что, если критическая точка оказалась максимумом, то и экстремум будет максимальным, а если минимумом, то минимальным по аналогии.

Алгоритм нахождения экстремума

Чтобы обобщить полученные знания, составим краткий алгоритм того, как находить точки экстремума.

  1. Находим область определения заданной функции и её интервалы, которые точно определяют, на каких промежутках функция непрерывна.
  2. Находим производную от функции f "(x).
  3. Вычисляем критические точки уравнения y = f (x).
  4. Анализируем изменения направления функции f (x), а также знак производной f "(x) там, где критические точки разделяют область определения данной функции.
  5. Теперь определяем, является ли каждая точка на графике максимумом или минимумом.
  6. Находим значения функции в тех точках, которые являются экстремумами.
  7. Фиксируем результат данного исследования – экстремумы и промежутки монотонности. Вот и все. Теперь мы рассмотрели, как можно найти экстремум на любом промежутке. Если вам необходимо найти экстремум на определенном промежутке функции, то делается это аналогичным образом, только обязательно учитываются границы производимого исследования.

Итак, мы рассмотрели, как найти точки экстремума функции. При помощи несложных вычислений, а также знаний о нахождении производных, можно найти любой экстремум и вычислить его, а также графически его обозначить. Нахождение экстремумов является одним из важнейших разделов математики, как в школе, так и в Высшем учебном заведении, поэтому, если вы научитесь правильно их определять, то учиться станет намного проще и интереснее.

Как видите, этот признак экстремума функции требует существования производной как минимум до второго порядка в точке .

Пример.

Найти экстремумы функции .

Решение.

Начнем с области определения:

Продифференцируем исходную функцию:

x=1 , то есть, это точка возможного экстремума. Находим вторую производную функции и вычисляем ее значение при x = 1 :

Следовательно, по второму достаточному условию экстремума, x=1 - точка максимума. Тогда - максимум функции.

Графическая иллюстрация.

Ответ:

Третье достаточное условие экстремума функции.

Пусть функция y=f(x) имеет производные до n -ого порядка в -окрестности точки и производные до n+1 -ого порядка в самой точке . Пусть и .

Пример.

Найти точки экстремума функции .

Решение.

Исходная функция является целой рациональной, ее областью определения является все множество действительных чисел.

Продифференцируем функцию:

Производная обращается в ноль при , следовательно, это точки возможного экстремума. Воспользуемся третьим достаточным условием экстремума.

Находим вторую производную и вычисляем ее значение в точках возможного экстремума (промежуточные вычисления опустим):

Следовательно, - точка максимума (для третьего достаточного признака экстремума имеем n=1 и ).

Для выяснения характера точек находим третью производную и вычисляем ее значение в этих точках:

Следовательно, - точка перегиба функции (n=2 и ).

Осталось разобраться с точкой . Находим четвертую производную и вычисляем ее значение в этой точке:

Следовательно, - точка минимума функции.

Графическая иллюстрация.

Ответ:

Точка максимума, - точка минимума функции.

10. Экстремумы функции Определение экстремума

Функция y = f(x) называется возрастающей (убывающей ) в некотором интервале, если при x 1 < x 2 выполняется неравенство (f(x 1) < f (x 2) (f(x 1) > f(x 2)).

Если дифференцируемая функция y = f(x) на отрезке возрастает (убывает), то ее производная на этом отрезке f " (x)  0

(f " (x)  0).

Точка x о называется точкой локального максимума (минимума ) функции f(x), если существует окрестность точки x о , для всех точек которой верно неравенство f(x) ≤ f(x о) (f(x) ≥ f(x о)).

Точки максимума и минимума называются точками экстремума , а значения функции в этих точках - ее экстремумами.

Точки экстремума

Необходимые условия экстремума . Если точка x о является точкой экстремума функции f(x), то либо f " (x о) = 0, либо f (x о) не существует. Такие точки называют критическими, причем сама функция в критической точке определена. Экстремумы функции следует искать среди ее критических точек.

Первое достаточное условие. Пусть x о - критическая точка. Если f " (x) при переходе через точку x о меняет знак плюс на минус, то в точке x о функция имеет максимум, в противном случае - минимум. Если при переходе через критическую точку производная не меняет знак, то в точке x о экстремума нет.

Второе достаточное условие. Пусть функция f(x) имеет производную f " (x) в окрестности точки x о и вторую производную в самой точке x о . Если f " (x о) = 0, >0 (<0), то точка x о является точкой локального минимума (максимума) функции f(x). Если же =0, то нужно либо пользоваться первым достаточным условием, либо привлекать высшие производные.

На отрезке функция y = f(x) может достигать наименьшего или наибольшего значения либо в критических точках, либо на концах отрезка .

Пример 3.22. Найти экстремумы функции f(x) = 2x 3 - 15x 2 + 36x - 14.

Решение. Так как f " (x) = 6x 2 - 30x +36 = 6(x -2)(x - 3), то критические точки функции x 1 = 2 и x 2 = 3. Экстремумы могут быть только в этих точках. Так как при переходе через точку x 1 = 2 производная меняет знак плюс на минус, то в этой точке функция имеет максимум. При переходе через точку x 2 = 3 производная меняет знак минус на плюс, поэтому в точке x 2 = 3 у функции минимум. Вычислив значения функции в точках x 1 = 2 и x 2 = 3, найдем экстремумы функции: максимум f(2) = 14 и минимум f(3) = 13.

Функции, вовсе необязательно знать о наличии первой и второй производной и понимать их физический смысл. Для начала нужно уяснить следующее:

  • экстремумы функции максимизируют или, наоборот, минимизируют значение функции в сколь угодно малой окрестности;
  • в точке экстремума не должно быть разрыва функции.

А теперь то же самое, только простым языком. Посмотрите на кончик стержня шариковой ручки. Если ручку расположить вертикально, пишущим концом вверх, то самая середина шарика будет экстремумом — наивысшей точкой. В этом случае говорят о максимуме. Теперь, если повернуть ручку пишущим концом вниз, то на середке шарика уже будет минимум функции. С помощью рисунка, приведенного здесь же, можно представить перечисленные манипуляции для канцелярского карандаша. Итак, экстремумы функции — это всегда критические точки: ее максимумы или минимумы. Прилегающий участок графика может быть сколь угодно острым или плавным, но он должен существовать с обеих сторон, только в этом случае точка является экстремумом. Если график присутствует лишь с одной стороны, точка эта экстремумом являться не будет даже в том случае, если с одной ее стороны условия экстремума выполняются. Теперь изучим экстремумы функции с научной точки зрения. Дабы точка могла считаться экстремумом, необходимо и достаточно, чтобы:

  • первая производная равнялась нулю или не существовала в точке;
  • первая производная меняла свой знак в этой точке.

Условие трактуется несколько иначе с точки зрения производных более высокого порядка: для функции, дифференцируемой в точке, достаточно, чтобы существовала производная нечетного порядка, неравная нулю, при том, что все производные более низшего порядка должны существовать и быть равными нулю. Это максимально простое толкование теорем из учебников Но для самых обычных людей стоит пояснить этот момент примером. За основу берется обыкновенная парабола. Сразу оговоримся, в нулевой точке у нее имеется минимум. Совсем немного математики:

  • первая производная (X 2) | = 2X, для нулевой точки 2Х = 0;
  • вторая производная (2Х) | = 2, для нулевой точки 2 = 2.

Таким нехитрым образом проиллюстрированы условия, определяющие экстремумы функции и для производных первого порядка, и для производных высшего порядка. Можно к этому добавить, что вторая производная как раз является той самой производной нечетного порядка, неравной нулю, о которой говорилось чуть выше. Когда речь заходит про экстремумы функции двух переменных, то условия должны выполняться для обоих аргументов. Когда происходит обобщение, то в ход идут частные производные. То есть необходимо для наличия экстремума в точке, чтобы обе производные первого порядка равнялись нулю, либо хотя бы одна из них не существовала. Для достаточности наличия экстремума исследуется выражение, представляющее собой разность произведения производных второго порядка и квадрата смешанной производной второго порядка функции. Если это выражение больше нуля, значит, экстремум имеет место быть, а если присутствует равенство нулю, то вопрос остается открытым, и нужно проводить дополнительные исследования.