15.06.2019

Крепление стоек шасси на авиамодель. Авиамоделирование, создание моделей самолетов, обработка дерева, металлов, пластмасс и других материалов, окраска моделей. Конструирование автомобиля при помощи подручных материалов


У многих моделистов периодически появляется желание построить радиоуправляемый самолет с убирающимся шасси , будь то чемпионатная пилотажка или заурядная полукопия. Сразу же возникает вопрос, какой привод лучше использовать - электрический (то есть от специального сервомеханизма) или пневматический? Ответ на этот вопрос зависит от многих факторов.

Первый - полетный вес модели. Большинство производителей электроприводного шасси ограничивается типоразмером, рассчитанным на вес модели до трех килограммов и рабочий объем двигателя до 6,5 см3 (кубатура двигателя указывается фирмой только чтобы дать приблизительное представление о размерах и весе модели). Эти ограничения стоит воспринимать всерьез, - в противном случае жесткости стоек может не хватить на одну посадку.

Исключением являются пилотажные модели, поскольку у них небольшая (по сравнению с некоторыми копиями) посадочная скорость, а их пилоты, как правило, хорошо подготовлены. Цены на шасси с электрическим приводом (для моделей до трех килограммов веса) примерно следующие: Hobbico - 30$, Robart - 35$, Graupner - 55$, OK Models - 65$.

Необходимо учитывать, что еще понадобится специальная машинка с металлическими шестернями и повышенным усилием (около 9 кг), которая стоит еще не менее 50$. Сразу отметим, что более дорогие «ноги», как правило, и более качественные. Стойки фирмы Hobbico нередко имеют остаточную деформацию даже после вполне удовлетворительных посадок. Если (заметив это!) не отогнуть их в исходное положение, колесо может не войти в нишу или войти с большим усилием.

При этом машинка привода будет потреблять огромное количество электроэнергии и полностью разрядит бортовые аккумуляторы за очень короткое время (кстати, - в этом состоит один из основных недостатков подобных систем вообще, что делает их применение на высококлассных копиях опасным). При грубых посадках поворотный кулак, изготовленный из углепластика, растрескивается. Шасси фирм Hobbico и имеют стойки только с одним пружинным витком, OK Models - с двумя, что существенно уменьшает вероятность появления остаточной деформации.

Следующий недостаток шасси с электрическим приводом - сложность первоначальной «настройки». При неточной регулировке длины тяг мощный сервомеханизм может повредить каркас модели, или же резко повысится энергопотребление. В такой ситуации нет гарантии, что стойки зафиксируются в выпущенном положении (это приведет к тому, что одна нога сложится при посадке). Вообще следует учитывать, что бортовые аккумуляторы модели, оборудованной подобной системой, в любом случае разряжаются быстрее, чем обычно.

Поэтому лучше сразу перейти на блок питания большей емкости (желательно свыше 1000 mАч). Рекомендуется установить выключатель с разъемом для контроля состояния аккумуляторов, и проверять их после каждого полета. Учитывая все упомянутые особенности, можно предположить, что область разумного применения электрических систем уборки шасси ограничивается пилотажными моделями и небольшими полукопиями. За рубежом в настоящее время более широкое распространение получили шасси с пневматическим приводом.

Они обладают рядом преимуществ. Их проще устанавливать на модели, так как нет необходимости проводить мощные тяги и располагать сервомеханизм между колесами (что зачастую невозможно из-за схемы модели). Отсутствуют операции по регулировке хода. Включение системы можно производить обычной или микро рулевой машинкой. Предлагаемый ряд типоразмеров узлов практически не ограничен.

Параллельно есть возможность использовать пневмосистему и для других бортовых механизмов. К недостаткам можно отнести вероятность отказа из-за утечки сжатого воздуха из баллона высокого давления; необходимость проверки давления в системе или ее дозаправки после каждого полета, а также высокую стоимость. Однако перечисленные недостатки после внимательного рассмотрения становятся не так уж весомы. Утечка воздуха, как показала практика, практически исключена и может возникнуть только при крайне неаккуратном обращении с системой. Проверка давления, по сути, заменяет собою контроль состояния аккумуляторов.

А повышенная цена, похоже, с лихвой окупается более высокой надежностью. Основными производителями пневматических узлов уборки шасси являются Robart и Century Jet. Стойки могут быть выполнены из закаленной проволоки с пружинным витком, либо в виде трубчатой телескопической конструкции, имитирующей шасси того или иного самолета-прототипа в различном масштабе. Телескопические стойки дороже и более подвержены повреждениям.

При посадке на грунт они не демпфируют ударные нагрузки, направленные вдоль оси модели, что может привести к повреждениям каркаса крыла. Отметим, что фирма Robart выпускает одновременно и специальные копийные насадки для проволочных стоек (последние популярны из-за хороших демпфирующих свойств, хотя и не так близки к настоящим самолетным по своей конструкции).

В состав пневмосистемы помимо самих узлов уборки со встроенными силовыми цилиндрами входят баллон высокого давления, заправочный клапан и управляющий клапан с приводом от сервомеханизма. Дополнительно могут применяться разъемы для быстрой стыковки трубопроводов, которые полезны при снятии и монтаже крыла, а также замедляющие воздушные жиклеры, обеспечивающие копийную скорость выпуска шасси.

Для заправки баллона высокого давления выпускается специальный ручной насос с манометром. Стоимость всего комплекта для модели весом 3-5 кг составляет около 200$. Существуют системы и для самолетов большей размерности. В целом можно сделать вывод, что фирменную пневматику для уборки и выпуска шасси имеет смысл применять на первоклассных моделях с полетным весом свыше 3 кг. Однако нужно помнить, что комплектная пневмосистема, как правило, довольно тяжелая. Поэтому прежде чем делать выбор в ее пользу, еще раз проверьте общую весовую сводку будущего самолета.

Вот и наступила осень. Это лето как-то до обидного очень быстро промелькнуло. Я так и не съездил на озеро (а ведь мне даже снилось оно пару раз)… Ну та ладно. Давайте расскажу о том, что интересного приключилось за это лето. Во-первых — я реанимировал после обидной аварии свой тяжелый транспортник , поставив ему полукопийную рулевую стойку. Вот о ней и расскажу.

Всегда хотел сделать что-то похожее. Можно, конечно, купить готовое решение. Например вот такую стойку . Или вообще целый комплект. Но, к сожалению, бюджет мой сейчас весьма ограничен. Это во-первых , а во-вторых и во-третьих — хотелось все таки сделать не такую уж и сложную в изготовлении полукопийную рулевую стойку для авиамодели своими руками.

Как сделать полукопийную рулевую стойку шасси с пружинной амортизацией своими руками

Итак, что понадобится:

В трубке меньшего диаметра сверлим отверстия (на фото сверху они уже просверлены). Расстояние зависит от диаметра колес. Большой точности не нужно — хватит тех пропорций что на фотографии. Отверстия должны быть просверлены точно по центру трубки насквозь. Причем то отверстие, что дальше от края — старайтесь просверлить под самый тонкий болтик, который найдете (например под 2мм). Зачем? А затем, что чем больший диаметр отверстия — тем меньше прочность трубки в этом месте.

Трубку большего диаметра сейчас не трогаем вообще.

Из алюминиевой полоски сгибаем хомутик и надеваем его на трубку. Собственно, вот сборная фотография.
Хммм.. а знаете, что я сейчас подумал? Думаю, что отверстие в трубке под крепление вот этого узла на фотографии выше — не нужно сверлить. Но тогда нужно надежно закрепить этот узел на трубке другим способом. Ну, например. посадить на клей. Плюсы отказа от отверстия — не снижается прочность трубки. Так, но я отвлекся.

Качалку от сервы после вот такого крепления нужно примотать прочной ниткой и промазать нитку суперклеем. Получим очень прочный монолитный узел. Да, я тут подумал, что возможно выглядит это очень страшно. Ну… да. Это правда — страшно, но это вообще экспромт… просто игрался. Следующую стойку (а мне понравились эти стойки!) буду делать аккуратнее. Есть еще план «Б» — разбогатеть и купить готовых .

Собираем стойку

Между фанерками в месте крепления колес — даем какую-то проставку, толщиной под диаметр стойки. Пружину для рулевой амортизирующей стойки нужно подбирать достаточно жесткую.

Далее нужно заняться трубкой большего диаметра. Я не стал заморачиватся… у меня транспортний самолет и так изнутри весь монтажной пеной заполнен. Поэтому я прикрутил к трубке кусок деревяшки, запихал ее внутрь фюзеляжа и залил пеной.
Думаю, что эту рулевую копийную стойку с амортизацией без проблем можно будет прикрепить к фанерному (бальзовому) каркасу менее радикальным способом. Ну а для авиамоделей из потолочки нужно будет обязательно продумывать усиления под трубку большего диаметра.

Спросите любого мальчишку, строящего первую схематическую модель, о чем он мечтает Почти наверняка он ответит - о копии. Да это и понятно. Ведь не зря считается, что модель-копия является одним из самых интересных и сложных классов авиационного моделизма. Строя копии, авиамоделисты знакомятся с техническими достижениями авиации, овладевают совершенными приемами пользования инструментом.

В редакцию приходит много писем с просьбой рассказать о наиболее простом и доступном варианте уборки и выпуска шасси на моделях-копиях. Мы предлагаем схему, разработанную в авиамодельном кружке КЮТа завода тяжелого станкостроения города Коломны. Она выполнена на модели-копии самолета Ан-24. Ее конструктор Юрий Шабалин стал чемпионом Московской области и серебряным призером Всероссийских соревнований школьников 1974 года.

К механизму уборки и выпуска шасси на модели-копии предъявляются следующие требования: конструкция должна быть проста и надежна в эксплуатации, она должна содержать в себе как можно меньше деталей, быть легкой по весу, позволять быстро заменить детали, вышедшие из строя, во время эксплуатации, и проверить их во время профилактических осмотров. С учетом этих требований мы и строили модель.

Работа механизма уборки и выпуска шасси осуществляется следующим образом: микроэлектродвигатепь ДП-10 через редуктор передает вращение на барабан. Трос прикреплен одним концом к нижней части верхнего подкоса, в другим концом - к барабану. Наматываясь на барабан, он тянет за собой нижнюю часть верхнего подкоса, который соединен шарнирно с нижним и поэтому увлекает за собой основную стойку. Основное шасси в убранном положении удерживается натянутым тросом. Промежуточный качающийся блок направляет трос и уменьшает трение при движении. Верхний подкос, описывая дугу, изменяет тем самым угол троса уборки в промежутке от точки крепления его в верхнем подкосе до подвижного блока. А так как промежуточным блок находится в подшипниках, он перемещается за тросом, удерживая его в канавке и направляя в соединительную трубку, ведущую к рабочему барабану.

1 - колесо; 2 - стойка шасси; 3 - нижнее ушко; 4 - нижний подкос; 5 - верхний подкос; 6 - стопорная пружина; 7 - ось стопорной пружины; 8 - кронштейн навески заднего подкоса; 9 - кронштейн навески стойки; 10 - болты крепления кронштейна; 11 - ось поворота стойки; 12- шплинт; 13 - шайба; 14 - ролик блока; 15- подшипник скольжения; 16 - корпус блока; 17 - трос уборки стоики, 18 - блок.

1- колесо; 2 - стоика; 3 - кронштейн навески стойки; 4 - стопорная защелка; 5 - промежуточный блок; 6 - тросик уборки 7. - ось подвески стойки; 8 шплинт; 9 - возвратная пружина; 10 - стопорная пружина защелки; 11-ось навески стопорной пружины.

Выпуск основных стоек шасси (рис. 1) осуществляется в обратном направлении. Ослабляя натяжение троса, стейка с помощью возвратной пружины выходит из мотогондолы и ставится на упор.

Уборка передней стейки (рис. 2) шасси происходит следующим образом.

Трос одним концом жестко закрепляется ка барабане основной стойки. Натягиваясь барабаном редуктора, он выводит из паза (упора стойки) стопорную защелку и через промежуточный блок убирает стойку.

Выпуск передней стойки происходит в обратном направлении. Под действием возвратной пружины она выходит, ослабляя натяжение троса. Пружина вводит защелку барабана в его прорезь.

Все детали стоек шасси, кроме осей и пружин, выполнены из дюралюминия Д-16Т.

При сборке и регулировке стоек шасси нужно добиться соосности и свободного движения всех шарнирных соединений.

Оси основных деталей стоек шасси можно быстро разобрать и устранить неполадки.

Механизм управления (рис. 3) расположен на центроплане в месте соединения крыла с фюзеляжем. Его лучше сделать съемным, чтобы можно было производить доработку или ремонт.

Управление механизмом электрическое, оно осуществляется переключателем. Питание электромеханизма подается от двух батареек 3336Л, соединенных последовательно. Они находятся около пилота в центре круга. Передача тока идет по кабелю, выполненному из двух проводов ПЭЛШО-0,25 и подвешенному к кордам.

Электросхема управления механизмом уборки и выпуском шасси модели-копии самолета Ан-24 дана на рисунке 4.

В. КЛИМЧЕНКО, Ю. ШАБАЛИН

Заметили ошибку? Выделите ее и нажмите Ctrl+Enter , чтобы сообщить нам.

Шасси самолета – это система, состоящая из опор, которые позволяют летательному аппарату осуществлять стоянку, перемещение машины по аэродрому или воде. С помощью данной системы осуществляется посадка и взлет самолетов. Система шасси состоит из стоек, на которые установлены колеса, поплавки или лыжи. Нужно отметить, что понятие «шасси» довольно обширно, поскольку составляющих стоек несколько, и они могут иметь различное строение.

Шасси обязано отвечать таким специальным требованиям:

    Управляемость и устойчивость аппарата при перемещении по земле.

    Иметь необходимую проходимость и не наносить урон взлетной полосе.

    Должно позволять летательному средству осуществлять развороты на 180 градусов при рулежке.

    Исключать возможность опрокидывания самолета или касания другими частями аппарата, кроме шасси, при посадке.

    Поглощение силы удара при посадке и передвижении по неровной поверхности. Быстрое гашение колебаний.

    Низкие показатели сопротивления при разбеге и высокая эффективность торможения при пробеге.

    Относительно быстрая уборка и выпуск системы шасси.

    Наличие аварийной системы выпуска.

    Исключение автоколебаний стоек и колес шасси.

    Наличие системы сигнализации о положении шасси.

Кроме этих показателей, шасси самолета должно отвечать требованиям ко всей конструкции летательного аппарата. Такими требованиями являются:

    Прочность, долговечность, жесткость конструкции при минимальных показателях веса.

    Минимальное аэродинамическое сопротивление системы в убранном и выпущенном положении.

    Высокие показатели технологичности конструкции.

    Долговечность, удобство и экономность при эксплуатации.

Разновидности систем шасси

1) Колесное шасси

Колесное шасси может иметь разные схемы компоновки. В зависимости от назначения, конструкции и массы самолета конструкторы прибегают к использованию разных типов стоек и расположения колес.

Расположение колес шасси. Основные схемы

    Шасси с хвостовым колесом, часто называют такую схему двухстоечной. Впереди центра тяжести расположены две главные опоры, а вспомогательная опора находится позади. Центр тяжести летательного аппарата расположен в районе передних стоек. Данная схема была применена на самолетах времен Второй мировой войны. Иногда хвостовая опора не имела колеса, а была представлена костылем, который скользил при посадке и служил в роли тормоза на грунтовых аэродромах. Ярким примером данной схемы шасси являются такие самолеты, как Ан-2 и DC-3.

    Шасси с передним колесом, такая схема имеет также название трехстоечное. За данной схемой было установлено три стойки. Одна носовая и две позади, на которые и припадал центр тяжести. Схему начали применять более широко в послевоенный период. Примером самолетов можно назвать Ту-154 и Boeing 747.

    Система шасси велосипедного типа. Данная схема предусматривает размещение двух главных опор в корпусе фюзеляжа самолета, одна впереди, а вторая позади центра тяжести самолета. Также имеются две опоры по бокам, возле законцовок крыльев. Подобная схема позволяет достичь высоких показателей аэродинамики крыла. В ту же очередь возникают сложности с техникой приземления и расположения оружия. Примерами таких самолетов являются Як-25, Boeing B-47, Lockheed U-2.

    Многоопорное шасси применяется на самолетах с большой взлетной массой. Данный тип шасси позволяет равномерно распределить вес самолета на ВПП, что позволяет снизить степень урона полосе. В этой схеме спереди могут стоять две и более стойки, но это снижает маневренность машины на земле. Для повышения маневренности в многоопорных аппаратах основные опоры также могут управляться, как и носовые. Примерами многостоечных самолетов является Ил-76, «Боинг-747».

2) Лыжное шасси

Лыжное шасси служит для посадки летательных аппаратов на снег. Данный тип используется на самолетах специального назначения, как правило, это машины с небольшой массой. Параллельно с данным типом могут использоваться и колеса.

Составляющие части шасси самолета

    Амортизационные стойки обеспечивают плавность хода самолета при побеге и разгоне. Основной задачей является гашение ударов в момент приземления. В основе системе используется азото-масляный тип амортизаторов, функцию пружины выполняет азот под давлением. Для стабилизации используются демпферы.

    Колеса, установленные на самолеты, могут отличаться по типу и размеру. Колесные барабаны изготовляются из качественных сплавов магния. В отечественных аппаратах их окрашивали в зеленый цвет. Современные самолеты оснащены колесами пневматического типа без камер. Они заполняются азотом или воздухом. Шины колес не имеют рисунка протектора, кроме продольных водоотводящих канавок. С помощью их также фиксируется степень износа резины. Разрез шины имеет округлую форму, что позволяет достичь максимального контакта с полотном.

    Пневматики самолетов оснащаются колодочными или дисковыми тормозами. Привод тормозов может быть электрическим, пневматическим или гидравлическим. С помощью данной системы сокращается длина пробега после посадки. Летательные аппараты с большой массой оснащаются многодисковыми системами, для повышения их эффективности устанавливается система охлаждения принудительного типа.

    Шасси имеет набор тяг, шарниров и раскосов, которые позволяют осуществлять крепление, уборку и выпуск.

Шасси убирается в больших пассажирских и грузовых самолетах и боевых машинах. Как правило, неубирающееся шасси имеют самолеты с низкими показателями скорости и малой массой.

Выпуск и уборка шасси самолета

Большинство современных самолетов оборудованы гидроприводами для уборки и выпуска шасси. До этого использовались пневматические и электрические системы. Основной деталью системы выступают гидроцилиндры, которые крепятся к стойке и корпусу самолета. Для фиксации положения используются специальные замки и распоры.

Конструкторы самолетов стараются создавать максимально простые системы шасси, что позволяет снизить степень поломок. Все же существуют модели со сложными системами, ярким примером могут послужить самолеты ОКБ Туполева. При уборке шасси в машинах Туполева оно поворачивается на 90 градусов, это делается для лучшей укладки в ниши гондол.

Для фиксации стойки в убранном положении используют замок крюкового типа, который защелкивает серьгу, размещенную на стойке самолета. Каждый самолет имеет систему сигнализации положения шасси, при выпущенном положении горит лампа зеленого цвета. Нужно отметить, что лампы имеются для каждой из опор. При уборке стоек загорается красная лампа или просто гаснет зеленая.

Процесс выпуска является одним из главных, поэтому самолеты оснащаются дополнительными и аварийными системами выпуска. В случае отказа выпуска стоек основной системы используют аварийные, которые заполняют гидроцилиндры азотом под высоким давлением, что обеспечивает выпуск. На крайний случай некоторые летательные аппараты имеют механическую систему открытия. Выпуск стойки поперек потока воздуха позволяет им открываться за счет собственного веса.

Тормозная система самолетов

Легкие летательные аппараты имеют пневматические системы торможения, аппараты с большой массой оснащают гидравлическими тормозами. Управление данной системы осуществляется пилотом из кабины. Стоит сказать, что каждый конструктор разрабатывал собственные системы торможения. В итоге используюся два типа, а именно:

    Курковый рычаг, который устанавливается на ручке управления. Нажатие пилотом на курок приводит к торможению всех колес аппарата.

    Тормозные педали. В кабине пилота устанавливают две педали торможения. Нажатие на левую педаль осуществляет торможение колес левой части, соответственно, правая педаль управляет правой частью.

Стойки самолетов имеют антиюзовые системы. Это уберегает колеса самолета от разрывов и возгорания при посадке. Отечественные машины оснащались растормаживающим оборудованием с датчиками инерции. Это позволяет постепенно снижать скорость за счет плавного усиления торможения.

Современная электрическая автоматика торможения позволяет анализировать параметры вращения, скорости и выбирать оптимальный вариант торможения. Аварийное торможение летательных аппаратов осуществляется более агрессивно, невзирая на антиюзовую систему.

Видео (шасси).

Что бывает если садиться без шасси