08.03.2020

Пропускает ли поликарбонат ультрафиолетовые лучи? Скромный труженик огорода — полиэтилен Полиэтиленовая пленка пропускает ультрафиолетовые лучи


Чтобы ответить на этот вопрос, разберемся с природой такого явления, как ультрафиолет, и с природой такого материала, как оргстекло.

Пока мы не подошли к подробным характеристикам, мы ответим на вопрос — Оргстекло пропускает ультрафиолет? Да пропускает!

Ультрафиолетовое излучение — это лучи, которые по длине волны располагаются сразу за видимым спектром. Диапазон длин волн для ультрафиолета составляет 10-400 нм. Диапазон 10-200 нм называют вакуумным или «дальним», так как лучи с такой длиной волны присутствуют исключительно в космическом пространстве и поглощаются атмосферой планеты. Оставшуюся часть диапазона называют «ближним» ультрафиолетом которые подразделяют 3 категории излучений:

  • длина волны 200-290 нм — коротковолновое;
  • длина волны 290-350 нм — средневолновое;
  • длина волны 350-400 нм — длинноволновое.

Каждый тип ультрафиолетового излучение производит различное воздействие на живые организмы. Коротковолновое — наиболее высокоэнергетичное излучение, повреждает биомолекулы, вызывает разрушение ДНК. Средневолновое — вызывает ожоги кожного покрова у человека, растения переносят кратковременное облучение без последствий, но при длительном происходит угнетение жизненных фенкций и гибель.

Длинноволновое — практически безвредно жизнедеятельности организма человека, безопасно и полезно для растений. Диапазон коротковолнового ультрафиолета и часть спектра средневолнового диапазона поглощает наша «защитная броня» — озоновый слой. До поверхности планеты, среды обитания живых существ и растений, добирается часть диапазона средневолнового излучения и весь длинноволновой диапазон, т.е. спектр полезных лучей и не вредящих при непродолжительном облучении.

Оргстекло — это химическая синтетическая полимерная структура метилметакрилата, представляет собой прозрачный пластик. Светопропускание несколько ниже чем у обыкновенного силикатного стекла, легко поддается механической обработке, небольшой вес. Оргстекло неустойчиво к воздействию некоторых растворителей — ацетона, бензола и спиртов. Производится на основе стандартного химического состава. Отличия марок и производителей заключаются в придании специфических свойств: ударопрочности, теплостойкости, защиты от УФ-излучения и т.д.

Стандартное оргстекло пропускает ультрафиолет. Его излучения и характеризуется коэффициентом пропускания:

  • не более 1%, для длины волны 350 нм;
  • не менее 70%, для длины волны 400нм.

Т.е. оргстекло пропускает только длинноволновое излучение, у самой границы диапазона длин волн, наиболее безопасное и наиболее полезное для живых организмов.

Стоит отметить, что у оргстекла невысокая устойчивость к механическому воздействию. Со временем, при попадании на него абразивных частиц, в процессе очистки поверхность повреждается, стекло приобретает матовость и снижает свою способность к пропусканию как видимого света, так и ультрафиолетового излучения.

В конце 1950-х годов, сразу после изобретения, начинает набирать популярность. Сначала он используется в качестве полимерной тары и защиты от ультрафиолетовых лучей в промышленности. С течением времени, полиэтилен быстро находит применение у цветоводов и овощеводов.

Достоинства и недостатки

На данный момент полиэтиленовая плёнка – самая популярная и дешёвая среди всех предложений на отечественном рынке. Большой спрос на неё обусловлен экономией средств. А вот достоинств перед аналогами у неё очень мало, хотя они и существуют:

  • доступная стоимость;
  • на 90% пропускает солнечный свет;
  • малый коэффициент температурного расширения;
  • со временем прочность материала увеличивается;
  • при низких температурах не утрачивает свою функциональность.

Самый главный недостаток – плёнка изначально не предназначена для данных целей. Покрытие выдерживает обычно не более сезона, после чего плёнка рвётся, трескается. Но этот минус компенсируется малой стоимостью плёнки, поэтому новым полиэтиленом теплицу можно укрывать ежесезонно.

Имеются и другие важные недостатки:

  • обыкновенная полиэтиленовая плёнка склонна к быстрому разрушению под влиянием УФ-лучей и высокой температуры.
    Если она используется в качестве дополнительного покрытия под теплицей из поликарбоната или стекла, срок службы такой плёнки составит примерно несколько лет. Если она натянута просто на тепличные дуги – прослужит едва ли месяца четыре;
  • высокие температуры и действие солнечных лучей уменьшают прочность плёнки, её морозоустойчивость и светопроницаемость;
  • повышенная влажность в тепличном пространстве собирает конденсат на поверхности плёнки, который задерживает собой солнечный свет;
  • тот же конденсат собирает на себе частицы пыли, которые ещё больше усугубляют проникновение света;
  • разница температур окружающей среды и тепличного пространства велика по той причине, что полиэтилен не пропускает инфракрасные лучи, которые стремятся вверх из нагретой почвы;
  • плёнка, натянутая на металлическую основу разрушается сильнее вследствие сильного нагревания металла.

Модификации полиэтиленовой плёнки

Ввиду своей в настоящее время полиэтилен для теплиц имеет достаточно большое количество разновидностей. Он различается как по прочности материала, так и по коэффициенту светопропускания.

Полиэтилен светостабилизированный

Одним из компонентов данного вида плёнки является специальное вещество, которое останавливает разрушение покрытия из-за неблагоприятной окружающей среды. Срок службы такой плёнки увеличивается в разы по сравнению с обыкновенной плёнкой – стабилизированный полиэтилен выдерживает несколько сезонов или может использоваться в течение всего года.

Отличить обычную плёнку от модифицированной внешне невозможно. При выборе необходимой стоит внимательно изучить этикетку.

Полиэтилен гидрофильный

Эта модификация имеет очень важное качество – она не даёт конденсату скапливаться на поверхности полимера. Капли распределяются по покрытию равномерно, так, что этот слой не уменьшает светопропускную способность и не создаёт капель.

Заслуга таких преимуществ плёнки в том, что она в своём составе содержит свето- и термостабилизаторы, которые не только увеличивают срок службы полимера в несколько раз, но ещё и задерживают тепловое излучение.

Ещё одним из плюсов является повышение урожайности в парниках с таким покрытием. По данным исследований, в теплицах с гидрофильным полиэтиленом урожайность и быстрота созревания увеличивается примерно на пятнадцать процентов.

Вспененный полиэтилен

Для тех, кто решил сделать самостоятельно сезонную для культур, которые боятся резких температурных перепадов, рекомендуется обратить внимание на данный вид плёнки. Она состоит из двух слоёв – монолита и вспененного материала. Отличие от обычной плёнки состоит в том, что этот полиэтилен хуже пропускает и рассеивает солнечные лучи , тем самым понижая дневную температуру среды. Ночью же тепло, накопившееся за день, медленно покидает парник, и он сохраняет высокую температуру внутри.

Плёнка из армированного полиэтилена

Данная плёнка отличается от других разновидностей тем, что содержит тройной слой полимера. Толщина полиэтилена для теплиц невелика (от 15 до 300 мкм), а средний слой – это армирующая сетка из моноволокна. В составе такой сетки может содержаться как стекловолокно, так и другие армирующие элементы, например, лавсан.

Стоит обратить внимание, что наибольшей прочностью будет обладать плёнка с частой сеткой и малым размером ячеек. Однако густая сетка уменьшает светопропускной коэффициент. Срок эксплуатации такой плёнки может составлять до десяти лет.

Что выбрать

Большой выбор модификаций полиэтиленовой плёнки не должен вводить в ступор, ведь каждая из них обладает своими определёнными свойствами. В тоже время от выбора плёночного покрытия будет зависеть весь сезонный урожай , поэтому к такому вопросу нужно подходить грамотно и во всеоружии. При выборе полиэтилена для теплиц необходимо отталкиваясь от бюджета определить наиболее подходящую модификацию для конкретных задач.

На страницах данного информационного ресурса уже отмечалась необходимость защиты изделий из полиэтилена, в частности полуфабрикатов (полиэтиленовых стержней, листов, плит и т.д.) из полиэтилена различных марок, а также других материалов семейства полиолефины, от вредного воздействия УФ - излучения, при эксплуатации изделий на открытом воздухе.

Вредное воздействие УФ - излучения выражается в изменении цвета материала (выцветании), а также в изменении его механических свойств - материал становится хрупким и растрескивается, даже без механической нагрузки.

Следует отметить что эти процессы (выцветание и изменение механических свойств) не связаны между собой – выцветание характеризует, прежде всего, стойкость красителей, используемых при производстве материалов, и поэтому потеря оригинального цвета изделия далеко не всегда означает изменение механических свойств материала.

Как уже отмечалось выше, для придания стойкости полиолефинов к воздействию УФ - излучения в их состав в процессе производства вводят специальные УФ - стабилизаторы (HALS – ингибиторы).

В целом можно сказать, что устойчивость материала к воздействию УФ - излучению, и, следовательно, срок службы изделий, зависит от количества и эффективности используемых УФ - стабилизаторов, а также от интенсивности УФ - излучения – в более высоких широтах интенсивность УФ - излучения ниже, чем в более низких. Дополнительно интенсивность УФ – излучения может усиливать, например, его отражение от водной поверхности.

Сочетание стабилизаторов и красителей, вводимых в состав материала, также может оказывать значительное воздействие на срок службы изделий, например вводимый в состав изделий из полиэтилена краситель на основе сажи сам по себе является хорошим УФ – стабилизатором, поэтому срок службы изделий из полиэтилена черного цвета является наибольшим.

Ведущие производители инженерных термопластов регулярно проводят тестирование производимых материалов для определения влияния УФ – излучения на их свойства. В целом можно сказать, что целевым показателем срока, в течение которого не должно происходить значительного изменения свойств материалов является 10 лет.

Однако с учетом того, что как уже отмечалось выше, интенсивность УФ – излучения для разных климатических зон различна, для мест высокой интенсивностью излучения реально достижимая величина этого показателя может быть значительно ниже.

С другой стороны, для изделий, в состав которых введен краситель на основе сажи, срок эксплуатации может быть значительно выше – в среднем до 20 лет, без значительных изменений свойств материала.

Отдельно стоит остановиться на вопросе выцветания материала. Данных эффект может наблюдаться в большей или меньшей степени, в зависимости от интенсивности УФ – излучения и стойкости применяемых красителей. При этом, стойкость применяемых в последнее время органических красителей, как правило, значительно ниже стойкости красителей на основе тяжелых металлов (например, кадмия). Поэтому далеко не всегда более современные материалы являются более устойчивыми к выцветанию.

Полимерный пластик характеризуется прочностью, практичностью, долговечностью и легкостью монтажа. При этом срок эксплуатации материала зависит от его технических характеристик. Сегодня мы рассмотрим столь актуальную для многих строителей и огородников тему, как пропускает ли поликарбонат ультрафиолетовые лучи.

Ультрафиолетовая защита

Поликарбонат считается одним из самых прочных и крепких полимеров. Однако данный материал разрушается под воздействием солнечных лучей. Так, листы полимерного пластика, используемые для обшивки тепличных сооружений, садовых оранжерей, беседок, веранд, террас и других открытых строений, быстро приходят в негодность. Спустя 2–3 года от момента возведения постройки обшивка полностью теряет свои первоначальные физические свойства и качества.

Поликарбонат не пропускает УФ лучи, что делает его идеальным материалом для обшивки теплицы

Изготовители полимерного пластика нашли способ повысить уровень износостойкости материала. Поликарбонат стали изготавливать со специальным ультрафиолетовым покрытием. Защитный слой представлял собой некие стабилизаторы-гранулы, которые добавлялись в материал при первичной обработке. К сожалению, применение подобного рода технологий требует значительного капиталовложения. Соответственно возрастает стоимость строительного материала.

В настоящее время полимерный пластик изготавливается с тонким ультрафиолетовым покрытием, которое так и называют – УФ-защита.

Существует два способа нанесения ультрафиолетового слоя:

  1. Напыление. Поверхность панели полимерного пластика покрывается тонким слоем специального раствора, который внешне похож на промышленную краску. Данный метод имеет существенные недостатки. В процессе транспортирования, монтажа и эксплуатации полотна защитный слой стирается, в результате чего полимер становится непригодным к эксплуатации. Нанесенная в виде напыления, УФ-защита неустойчива к атмосферным осадкам и механическим воздействиям извне.
  2. Экструзионная защита от прямых солнечных лучей. Специальный слой, предотвращающий разрушение полимера, вживляется в поверхность поликарбонатной панели. Полотно устойчиво к физическим и химическим повреждениям, а также различным атмосферным явлениям. Срок эксплуатации поликарбоната с экструзионной защитой от солнца составляет 20–25 лет.

Видео «Защита поликарбоната от ультрафиолета»

Из этого видео вы узнаете, какая бывает защита от ультрафиолета у сотового поликарбоната.

Правила выбора

Многие интересуются, как определить наличие УФ-покрытия на поверхности листа полимерного пластика.

Ответственные производители наклеивают защитную пленку на листы поликарбоната. Прозрачный бесцветный полиэтилен говорит о том, что с данной стороны панели защита от солнца отсутствует. Прозрачная цветная пленка – первый ориентир наличия защитного ультрафиолетового слоя.

  • название и тип строительного материала;
  • технические характеристики поликарбоната;
  • рекомендации об особенностях погрузки, разгрузки, транспортирования, монтажа и ухода за полимером;
  • сведения о компании-изготовителе.

Некоторые виды листов поликарбоната обладают усиленной защитой от
ультрафиолета, подбирать их стоит в зависимости от предназначения

Зачастую маркировка наносится на цветной полиэтилен, который помогает избежать царапин, вмятин, сколов и трещин внешней стороны поликарбоната.

Если пленка отсутствует, поверните полимер к солнцу. Сторона с ультрафиолетовым покрытием отражает характерные фиолетовые блики на солнце.

При выборе строительного материала, в том числе и полимерного пластика, нужно ориентироваться на технические свойства и качества материала.

Поликарбонат с защитой ультрафиолетового типа является гарантией долговечности и прочности обшивки строения.

Были времена, когда загорелая кожа считалась признаком низкого происхождения, и знатные дамы старались защитить лицо и руки от солнечных лучей, дабы сохранить аристократическую бледность. Позже отношение к загару изменилось - он стал непременным атрибутом здорового и успешного человека. Сегодня, несмотря на неутихающие споры относительно пользы и вреда инсоляции, бронзовый оттенок кожи по-прежнему находится на пике популярности. Вот только возможность посещать пляж или солярий есть не у всех, и в связи с этим многие интересуются, можно ли загореть через оконное стекло, расположившись, например, на прогретой солнцем застекленной лоджии или мансарде. По информации сайта http://onwomen.ru

Наверное, каждый профессиональный водитель или просто человек, проводящий длительное время за рулем автомобиля, замечал, что кисти его рук и лицо со временем покрываются легким загаром. То же относится к офисным служащим, вынужденным сидеть всю рабочую смену у незанавешенного окна. На их лицах нередко можно обнаружить следы загара даже в зимний период. И если человек не является завсегдатаем соляриев и не совершает ежедневный променад по паркам, то иначе как загаром через стекло объяснить данное явление не получится. Так пропускает ли стекло ультрафиолет и можно ли загореть через окно? Давайте разбираться.

Природа загара

Для того чтобы ответить на вопрос, можно ли получить загар через обычное оконное стекло в машине или на лоджии, нужно разобраться в том, как именно происходит процесс потемнения кожных покровов и какие факторы оказывают на него влияние. В первую очередь следует отметить, что загар - это не что иное, как защитная реакция кожи на солнечное излучение. Под воздействием ультрафиолета клетки эпидермиса (меланоциты) начинают вырабатывать вещество меланин (темный пигмент), благодаря которому кожа и приобретает бронзовый оттенок. Чем выше концентрация меланина в верхних слоях дермы, тем интенсивнее получается загар.

Однако такую реакцию вызывают не все УФ-лучи, а только лежащие в очень узком диапазоне длин волн. Ультрафиолетовые лучи условно подразделяются на три типа:

  • А-лучи (длинноволновые) - практически не задерживаются атмосферой и беспрепятственно достигают земной поверхности. Такое излучение считается самым безопасным для человеческого организма, поскольку не активизирует синтез меланина. Все, на что оно способно, - это вызывать легкое потемнение кожных покровов, и то только при длительном воздействии. Однако при избыточной инсоляции длинноволновыми лучами происходит разрушение коллагеновых волокон и обезвоживание кожи, вследствие чего она начинает быстрее стареть. А у некоторых людей именно из-за А-лучей развивается аллергия на солнце. Длинноволновое излучение легко преодолевает толщу оконного стекла и приводит к постепенному выгоранию обоев, поверхности мебели и ковров, но полноценный загар с его помощью получить невозможно.
  • В-лучи (средневолновые) - задерживаются в атмосфере и достигают поверхности Земли лишь частично. Данный тип излучения оказывает непосредственное влияние на синтез меланина в клетках кожи и способствует появлению быстрого загара. А при его интенсивном воздействии на коже возникают ожоги различной степени. Сквозь обычное оконное стекло В-лучи проникать не способны.
  • С-лучи (коротковолновые) - представляют огромную опасность для всех живых организмов, но, к счастью, они практически полностью нейтрализуются атмосферой, не достигая поверхности Земли. Столкнуться с таким излучением можно только высоко в горах, однако и там его действие крайне ослаблено.Физики выделяют еще один тип ультрафиолетового излучения - экстремальный, для которого часто используется термин «вакуумный» ввиду того, что волны данного диапазона полностью поглощаются атмосферой Земли и не попадают на земную поверхность.

УФ представляет из себя излучение с длинами волн от 400 нм до 10 нм. Оно подразделяется на 4 диапазона:
А: 400-315 нм
В: 315-280 нм
С: 280-100 нм
Экстремальный: 121-10 нм.

Разные материалы имеют различную прозрачность для ультрафиолетовых лучей в зависимости от длины волны. Для экстремального диапазона непрозрачен даже воздух! Оконное стекло пропускает диапазон А, но не пропускает 3 других.
В этом можно убедиться, посмотрев график.

График проверяется простым экспериментом. Через обычное стекло толщиной 6 мм светим УФ светодиодом 365 нм на невидимую надпись, светящуюся только под ультрафиолетом.

Никакого заметного снижения яркости нет. Можно взять стекло толще в несколько раз, но надпись продолжит светиться, ультрафиолет очень хорошо проходит!

Пропускание стеклом 400-315 нм особенно важно учитывать при выборе качественных солнцезащитных очков, потому что через стеклянную линзу без защитного слоя проходит большая часть ультрафиолета, присутствующего на улице: в Москве от 301 нм, в умеренных широтах от 295 нм, в мире от 286 нм.

Если сказать, что воздух не пропускает ультрафиолет — это будет полуправда, также, как сказать, что стекло не пропускает УФ. Всегда следует упоминать конкретный диапазон ультрафиолета, чтобы не появлялись такие опасные полумифы.

  • Можно ли загореть через стекло?

    Можно ли получить загар через оконное стекло или нет, напрямую зависит от того, какими свойствами оно обладает. Дело в том, что стекла бывают разных видов, на каждый из которых УФ-лучи воздействуют по-разному. Так, органическое стекло отличается высокой пропускной способностью, что позволяет обеспечить прохождение всего спектра солнечного излучения. То же самое касается и кварцевого стекла, которое используется в лампах для солярия и в устройствах для обеззараживания помещений. Обычное же стекло, применяемое в жилых помещениях и автомобилях, пропускает исключительно длинноволновые лучи типа А, и загореть через него нельзя. Другое дело, если заменить его оргстеклом. Тогда можно будет принимать солнечные ванны и наслаждаться красивым загаром практически круглый год.

    Хотя иногда бывают случаи, когда человек проводит некоторое время под солнечными лучами, проходящими через окно, а потом обнаруживает на открытых участках кожи легкий загар. Разумеется, он находится в полной уверенности, что загорел именно путем инсоляции через стекло. Но это не совсем так. Существует весьма простое объяснение данному явлению: изменение оттенка в таком случае происходит в результате активизации небольшого количества остаточного, выработанного под воздействием ультрафиолета типа В пигмента (меланина), находящегося в клетках кожи. Как правило, такой «загар» носит временный характер, то есть быстро исчезает. Одним словом, для того чтобы приобрести полноценный загар, необходимо либо посещать солярий, либо регулярно принимать солнечные ванны, а добиться изменения естественного оттенка кожи в сторону более темного через обычное оконное или автомобильное стекло не получится.

  • Нужно ли защищаться?

Волноваться по поводу того, можно ли получить загар через стекло, надо только тем людям, которые имеют очень чувствительную кожу и предрасположенность к возникновению пигментных пятен.

Им рекомендуется постоянно пользоваться специальными средствами с минимальной степенью защиты (SPF). Наносить такую косметику следует главным образом на лицо, шею и зону декольте. Однако слишком активно защищаться от ультрафиолета, тем более длинноволнового, все же не стоит, ведь солнечные лучи в умеренном количестве весьма полезны и даже необходимы для нормального функционирования человеческого организма.