10.02.2019

Чем выключатель нагрузки отличается от рубильника. Большая энциклопедия нефти и газа


Разъединитель представляет собой коммутационный аппарат, используемый для включения и отключения электрических цепей в таких условиях, при которых на его контактах не возникает длинной открытой электрической дуги.

Разъединители изготавливаются для внутренней (буква В в наименовании) и наружной (буква Н в наименовании) установки. Буква Л указывает на наличие линейного контакта, буква О - на однополюсное испол­нение, 3 - на наличие ножей заземления (од­ного - 1 или двух - 2, в маркировке, после буквенного обозначения), Д - двухколонковую конструкцию. Числа в наименовании означают напряжение (кВ) и номинальный ток (А)

Разъединители РВО состоят из цоколя, опорных изоляторов и токопровода. Цоколь в виде швеллера служит основанием для установки малогабаритных изоляторов и крепления разъединителя. Токопровод образует два одинаковых неподвижных контакта и соединяющий их подвижный нож. Во включенном положении нож запирается специальным зацепом, что исключает самопроизвольное открытие ножа под действием сил тяжести и электродинамических сил. Открытие ножа на угол свыше 75° ограничивается упором на скобе осевого контакта.

Трехполюсные разъединители серии РВ (рис. 9) изготовляются на напряжения от 6 до 35 кВ и номинальные токи до 1000 А. Каждый полюс имеет два неподвижных опор­ных изолятора и изолирующую тягу, присоединенную к общему валу. Включение и отключение разъединителя осуществляются пово­ротом вала с помощью привода, перемещающего тягу.

Разъединители с заземляющими ножами РВЗ в зависимости от варианта использования разъединителя имеют один или два вала с заземляющими ножами, которые с помощью пластин крепятся к раме. Заземляющие ножи снабжены дополнительными заземляющими контактами, которые укреплены под основны­ми неподвижными контактами. В разъедини­телях РВЗ предусмотрена блокировка между валом основных и валом заземляющих ножей, что исключает возможность ошибочных дей­ствий при оперировании с разъединителем.

Короткозамыкатель - это быстродействующий контактный аппарат, который по сигналу релейной защиты создает искусственное КЗ сети.

Принцип действия: при внутреннем повреждении силового трансформатора включается короткозамыкатель и создает искусственное короткое замыкание. В это время на питающей подстанции релейная защита реагирует на ток искусственного короткого замыкания и отключает питающую линию, а соответственно, и силовой трансформатор от сети.

Устройство: В основании короткозамыкателя размещен вал, установленный в подшипниках, две включающие пружины с регулировкой натяжения, соединенные с основанием и рычагами вала короткозамыкателя, а также гидравлический буфер. Нормальное по­ложение короткозамыкателя отключенное. При этом нож отведен от неподвижного контакта на разрядное расстояние, а его включающие пружины растянуты. Это положение ножа фиксируется приводом. При подаче сигнала на привод короткозамыкателя привод освобож­дает нож короткозамыкателя, который под действием пружины входит в неподвижный контакт, создавая короткое замыкание, на землю.

Отделитель - высоковольтный аппарат, предназначенный для автоматического отключения повреждённых участков цепи в бестоковую паузу АПВ, поскольку его конструкция не рассчитана на гашение электрической дуги. Устройство отделителя такое же как и разъединителя. Отличие от последнего в том, что отделитель в комбинации с короткозамыкателем создаёт систему отделитель-короткозамыкатель которая представляет альтернативу высоковольтному выключателю.

Принцип действия: обычно отделитель представляет контактную систему рубящего типа без дугогашения и снабжённого пружинно - моторным приводом. В нормальном режиме электродвигателем осуществляется натяжение пружины и постановку механизма на защёлку. При подаче сигнала защелка освобождается специальным расцепителем электромагнитного действия и под действием натянутой пружины отделитель размыкает цепь.

Выключатель нагрузки представляет собой трехполюсный коммутационный аппарат переменного тока для напряжения свыше 1 кВ, рассчитанный на отключение рабочего тока, и снабженный приводом для неавтоматического или автоматического управления. Выключатели нагрузки не предназначены для отключения тока короткого замыкания, но их включающая способность соответствует электродинамической стойкости при коротких замыканиях.

Классификация: автогазовые; вакуумные; элегазовые; воздушные; электромагнитные.

В положении "включено" вспомогательные ножи входят в гасительные камеры. Контакты разъединителя 2 и скользящие контакты гасительных камер 7 замкнуты. Большая часть тока проходит через контакты разъединителя 8 в процессе отключения сначала размыкаются контакты разъединителя; при этом ток смещается через вспомогательные ножи 4 в гасительные камеры. Несколько позднее размыкаются контакты в камере.

В положении "отключено" вспомогательные ножи находятся вне гасительных камер; при этом обеспечиваются достаточные изоляционные разрывы.

Требования, предъявляемые к разъединителям:

1) разъединители должны создавать ясно видимый разрыв цепи, соответствующий классу напряжения установки;

2) приводы разъединителей должны иметь устройства жесткой фиксации ножей в каждом из двух оперативных положений: включенном и отключенном. Кроме того, они должны иметь надежные упоры, ограничивающие поворот ножей на угол, больший заданного;

3) разъединители должны включаться и отключаться при любых наихудших условиях окружающей среды (например, обледенении);

4) опорные изоляторы и изоляционные тяги должны выдерживать механические нагрузки, возникающие при выполнении операций;

5 ) главные ножи разъединителей должны иметь блокировку с ножами заземляющего устройства, исключающую возможность одновременного включения тех и других.


Похожая информация.


Выключатель нагрузки — высоковольтный коммутационный аппарат, предназначенный для коммутации токов трехфазной электрической сети в номинальном режиме. Коммутация токов данным элементом оборудования, в зависимости от типа, может осуществляться дистанционно, в том числе автоматически или вручную, с места. Данный тип устройств является достаточно популярным и применяется в электрических сетях высокого напряжения. Далее мы рассмотрим устройство, принцип действия и назначение выключателей нагрузки.

Назначение

Назначение ВН — коммутация рабочих токов в электроустановках, то есть мощностей, которые не превышают допустимые (номинальные) значения для того или иного участка электрической сети. Данное устройство не рассчитано на отключение токов аварийного режима, поэтому его можно устанавливать только при условии наличия в цепи защиты от короткого замыкания и перегрузки, которая реализуется плавкими предохранителями (ПК, ПКТ, ПТ) или защитным аппаратом, установленным со стороны источника питания или на группе потребителей.

При этом ВН имеет отключающую способность, которая соответствует электродинамической стойкости при коротких замыканиях, что позволяет использовать данный электрический аппарат для подачи напряжения на участок электрической сети, не зависимо от его текущего состояния, например, для пробного включения.

Таким образом, при условии наличия в цепи защиты от сверхтоков рассматриваемый элемент оборудования может эксплуатироваться как полноценный высоковольтный защитный аппарат (масляный, вакуумный или элегазовый). А при наличии моторного привода может участвовать в работе различных автоматических устройств (АВР, АПВ, АЧР, ЧАПВ), а также управляться удаленно автоматизированной системой диспетчерского технологического управления.

Применение

Область применения выключателя нагрузки – преимущественно сети класса напряжения 6 и 10 кВ. Применение данных коммутационных устройств обусловлено, прежде всего, экономией: ВН значительно дешевле полноценных высоковольтных защитных аппаратов, а также требуют значительно меньше затрат на обслуживание и ремонт.

Где применяются данные элементы оборудования? ВН являются альтернативой — их применяют для коммутации токов стороны высокого напряжения силовых трансформаторов. Но только при условии наличия в цепи присоединения трансформатора, как и упоминалось выше, предохранителей или защитных элементов оборудования на другом конце линии со стороны смежной питающей подстанции либо линейных выключателей, от которых запитано распределительное устройство, питающее данный трансформатор.

Выключатели нагрузки применяют в других сетях небольшой мощности в качестве самостоятельного коммутационного аппарата. На протяженных и разветвленных воздушных линиях устройства используются для удобства отключения участков линий без необходимости полного ее обесточивания. При этом на питающей подстанции устанавливается выключатель для защиты всей линии от повреждений.

Конструкция

Рассмотрим, из чего состоит выключатель нагрузки на примере устройства коммутационного аппарата типа ВНР-10/400

  1. Основание (рама).
  2. Опорный изолятор.
  3. Держатели с контактами.
  4. Подвижный рабочий нож.
  5. Камера гашения дуги.
  6. Неподвижный верхний контакт.
  7. Изолирующая тяга.
  8. Рычаг.
  9. Гибкая связь.
  10. Нож заземления.
  11. Вал заземления.
  12. Тяга блокировочного устройства.
  13. Пружины.
  14. Резиновые прокладки.
  15. Вал рабочих ножей.

Принцип действия

Рассмотрим вкратце, как работают выключатели нагрузки на примере вышеупомянутого ВНР-10/400, предоставленного на фото:

Конструктивно данный коммутационный аппарат схож с разъединителем. Главное отличие разъединителя от ВН — наличие у последнего дугогасительного устройства и привода, обеспечивающего более быстрое выполнение операций.

Принцип действия выключателя нагрузки следующий. При включенном положении подвижные контакты находятся в дугогасительной камере. В нижней части дугогасительного устройства расположены дополнительные дугогасящие контакты. При выполнении операции отключения сначала размыкаются основные контакты, а затем дугогасительные. Образовавшаяся в процессе разрыва контактов электрическая дуга попадает в дугогасительную камеру, где нагревает до высокой температуры оргстекло, которое в свою очередь выделяет большое количество газов. Эти газы мощным потоком вырываются из дугогасительной камеры, чем гасят возникшую электрическую дугу за несколько миллисекунд.

Разъединители применяются для отделения участка сети на время ревизии или ремонта силового оборудования, для создания безопасных условий работы и отделения от смежных частей электрооборудования, находящихся под напряжением, а также для перефиксации присоединения с одной системы шин на другую, в электроустановках подстанций с двумя системами шин, без перерыва питания. Разъединители способны размыкать электрическую цепь только при отсутствии в ней тока или при весьма малом токе. В отличие от выключателей, разъединители в отключенном состоянии образуют видимый разрыв цепи. После отключения разъединителей с обеих сторон объекта, например, выключателя, трансформатора или другого оборудования, которое необходимо вывести в ремонт, последние должны заземляться с обеих сторон, либо при помощи переносных заземлений, либо с помощью специальных заземляющих ножей, встраиваемых в конструкцию разъединителя. Поэтому разъединители в электрических сетях занимают очень важное место и к их работе предъявляются довольно жесткие требования, как, впрочем, и к другим коммутационным аппаратам. Выпускаемые разъединители должны иметь довольно высокий показатель надежности, чтобы в нужный момент отделить поврежденный или выведенный в ремонт участок электрической схемы.

Главными недостатками разъединителя являются: невозможность отключения токов нагрузки, потому это, как правило, приводит к разрушению и повреждению разъединителя, невозможность работы разъединителя внутренней установки работать на открытом воздухе, а также малые показатели термической и динамической стойкости.

Как же происходит операция отключения электрической схемы разъединителем? Рассмотрим этот процесс поэтапно. На первом этапе, при размыкании контактов разъединителя образуется открытая электрическая дуга, которая под действием магнитного поля и выделяющегося тепла, вытягивается и поднимается в виде петель на расстояние нескольких метров. На втором этапе, когда расстояние между контактами стало значительно больше, дуга продолжает гореть, потому что происходит явление деионизации воздуха и проводимость его сохраняется в моменты прохождения тока через нуль. На третьем этапе происходит удлинение электрической дуги, т.к. расстояние между контактами наибольшее, сопротивление и напряжение ее увеличиваются, а ток при этом падает, и при критической длине дуги, ток уменьшается до нуля, а напряжение восстанавливается до напряжения сети, и дуга гаснет.

Из вышеописанного процесса можно сделать вывод, что надежность работы разъединителя зависит от степени его отключающей способности, т.е. способность разъединителя отключить ток порядка несколько ампер или десятка ампер. Это является весомым показателем при выборе разъединителя для установки его в конкретный участок сети. Также при выборе необходимо учитывать фактор опасности переброса дуги на корпус (раму) разъединителя и соседние фазы, что может возникнуть при отключении данным коммутационным аппаратом. Отсюда следует, что значение допустимых отключаемых токов напрямую зависит от расстояния между полюсами разъединителя.

За счет применения опорных изоляторов со значительным показателем механической прочности и устранения замкнутых и полузамкнутых контуров тока в токоведущих частях разъединителя, повышается способность токоведущих элементов к противостоянию электродинамическим усилиям, другими словами это динамическая стойкость.

Немаловажное значение, для обеспечения надежной работы, имеет состояние контактных частей разъединителя, которые должны обладать наименьшим переходным сопротивлением. Как видно из рис.1, в увеличенном виде контактные поверхности, как бы они отшлифованы не были, не идеально ровные и соприкасаются только в отдельных точках. Поэтому при отключении линии тока на нижнем контакте находятся под углом по отношению к верхнему контакту или будут параллельны. Вследствие этого возникают электродинамические силы, которые стремятся оторвать контакты друг от друга.


Рис. 1. Поверхность контакта разъединителя в увеличенном виде.

Явление электродинамики сопровождается значительным нагревом контакта, что может вызвать оплавление, обгорание и даже его полное разрушение.

Для уменьшения электродинамических сил на контактные поверхности наносится тонкий слой серебра.

Немаловажным фактором для выбора разъединителя является также его достаточная термическая стойкость, т.е. способность разъединителя пропустить предельный ток короткого замыкания в течение определенного промежутка времени без образования недопустимого нагрева. Это значение приводится в справочниках и равняется четырем секундам – для разъединителей на напряжение до 35 кВ, три секунды – для разъединителя напряжением 110 кВ и выше. Из этого следует, что в аварийной ситуации режим работы разъединителя характеризуется его термической стойкостью.

Как уже упоминалось, разъединители не предназначены для коммутации токов нагрузки, отключение или включение разъединителем нагрузочного тока приводит к полному разрушению и непригодности разъединителя к дальнейшей эксплуатации. Поэтому, чтобы безопасно эксплуатировать разъединители следует исключить возможности коммутации тока нагрузки, для этого применяются механические, электрические и электромагнитные блокировки, которые разрешают произвести операции только тогда, когда выключатель данного разъединителя находится в отключенном положении. Причем механическая блокировка монтируется еще при производстве и заложена в самой конструкции разъединителя.

Довольно часто неопытные электрики путают назначение выключателей нагрузки и разъединителей с другими элементами силовой цепи (). Но между ними существуют серьезные различия, которые мы и рассмотрим в этой статье.

Выключатели нагрузки

Выключатель нагрузки типа ВН-16 (без предохранителей) и ВНП-16 (с предохранителями в комплекте) представляет собой маломощный высоковольтный аппарат, предназначенный для подключения и отключения электрических цепей, которые находятся под нагрузкой. Важно помнить, что он не рассчитан на отключение токов короткого замыкания. Эта задача выполняется при установке выключателей нагрузки с предохранителями типа ПК-6 или ПК-10.

Выключатель нагрузки представляет собой обычный трехполюсный разъединитель с пристроенным дугогаситеьным устройством, способным гасить маломощную дугу тока нагрузки в сетях 6 – 10 кВ. Данные выключатели допускают нечастые отключения токов до 800 А при напряжении 6 кВ или до 400 А при напряжении в 10 кВ.

Выключатель ВН-16 устанавливаться на подстанциях городского типа для отключения под нагрузкой кабельных линий и силовых трансформаторов. Довольно часто данные выключатели оборудуются включающими и отключающими магнитами, что позволяет использовать их при дистанционном управлении и в схемах на стороне высокого напряжения.

На рисунке ниже показан общий вид выключателя нагрузки типа ВН-16 на 10 кВ:

На раме выключателя нагрузки 1 установлены отключающие пружины 2, связанные с валом 3. На валу установлен проводной рычаг 4, к которому присоединяется тяга привода выключателя. Тяга привода и вал удерживаются защелкой привода в рабочем положении и отключающие пружины при этом сжаты. При включении вал выключателя нагрузки поворачивается и поступательное вращение фарфоровых тяг 5 приводит к врубанию ножей подвижных контактов 6 в неподвижные 7. Подвижные контакты выполнены в виде двухполосных ножей. Между полосами 8 расположены дугогасительные ножи 9.

Гашению электрической дуги при отключении способствуют газы, выделяемые из органического стекла вкладышей, расположенных внутри пластмассового корпуса дугогасительной камеры 10.

Основные технические данные выключателей нагрузки ВН-16 приведены в таблице ниже:

Разъединители

Разъединитель – это коммутационный аппарат назначением которого является создание видимого разрыва в электрической цепи, а также для включение и отключение силовых цепей под напряжением, но при отсутствии нагрузки (I c = I xx).

Разъединители бывают однополюсные и трехполюсные. Включение и отключение однополюсных разъединителей производится вручную, с помощью изолирующей штанги, а трехполюсные используют специальный привод. Разъединители могут изготавливаться для внутренней и наружной установок. Трехполюсные разъединители для внутренней установки на напряжения 6 – 10 кВ отличаются от выключателей нагрузки отличием дугогасительных устройств.

10) 20; 11) 35 кВ

Ответ: ___4,8,9_____________

63. Какие напряжения не применяются для генераторов и синхронных компенсаторов, кВ? (выберите верный ответ)

1) 3; 2) 6,3; 3) 10,5; 4) 13,8; 5) 15,75; 6) 18; 7) 20; 8) 24; 9) 35; 10) 110;

Ответ: __1,4,6,8,9,10____________

64. Что называют турбоагрегатом?

Паровая турбина, соединненая с генератором

65. Что такое гидроагрегат?

Гидротурбина, соединненая с генератором

66. Какой КПД у современных мощных КЭС? (выберите верный ответ)

1) 30-32%; 2) 40-42% ; 3) 50-52%; 4) 60-62%.

Ответ: ____2______

67. На каких напряжениях выдается электроэнергия на КЭС? (выберите верный ответ)

1) 110-750 кВ ; 2) 35-220; 3) 10-220; 4) 110-220; 5) 220-500.

Ответ: _____1________

68. Установите соответствие между типом и системой охлаждения турбогенератора.

1. Косвенное воздушное - в А. ТВМ

2. Водородно – водяное - г Б. ТВФ

3. Непосредственное жидкостное - а В. Т

4. Непосредственное водородное обмотки ротора Г. ТВВ

и сердечника статора, косвенное водородное

Обмотки статора-б

Ответ: ____________

69. Сколько полюсов у турбогенераторов ТЭС? (выберите верный ответ)

1; 2; 4; 6; 8; 10.

Ответ: ___число пар полюсов 1,тогда полюсов 2_________

70. Начиная с какой мощности электродвигатели собственных нужд выполняется на напряжение 6 кВ? (выберите верный ответ)

1) > 50; 2) > 100; 3) > 150; 4) > 200; 5) > 300; 6) > 400 кВт.

Ответ: _____4_______

71. Для каких измерительных приборов требуется наиболее высокий класс точности ТА и Т V?

Счетчиков

72. Каковы преимущества турбогенераторов типа ТФ?

Ф-форсированное (непосредственное) охлаждение обмотки ротора – теплоотводящая среда подается внутрь полых проводников обмотки. ТВФ- статор имеет косвенное, а ротор непосредственное водородное охлаждение.

При непосредственном охлаждении теплоотводящие свойства среды могут быть использованы более эффективно, чем при косвенном. Это позволяет увеличить плотность тока в обмотках и соответственно мощность генератора более чем в 3 раза.

73. Каковы преимущества турбогенераторов ТЗВ?

Непосредственное охлаждение обмоток статора и ротора водой (коденсатом турбин или дистиллированная вода).

Водой охлаждаются не только обмотки, но и сталь ротора и его конструктивные элементы. Применение воды благодаря высокой теплоемкости и небольшой вязкости наиболее эффективно. Позволяет уменьшить расход активных металлов, уменьшить диаметр и повысить предельную мощность. Кроме этого коденсат турбин или дистиллированная вода обладают достаточно высокими изолирущими свойствами. Вода негорюча.

74. Из каких Т V можно составить схему соединения?

Из группы измерительных трансформаторов типа ЗНОМ

75. Какая ЭС имеет наименьший расход электроэнергии на собственные нужды? (выберите верный ответ)

1) КЭС на газе ; 2) пылеугольные КЭС; 3) газомазутные ТЭЦ; 4) пылеугольные ТЭЦ.

Ответ: ____1________

76. Какая ЭС имеет наибольший расход электроэнергии на собственные нужды? (выберите верный ответ)

1) газомазутная ТЭЦ; 2) пылеугольная ТЭЦ ; 3) пылеугольная КЭС; 4) КЭС на газе.

Ответ: 2____________

77. Какая ЭС имеет наименьший расход эл.энергии на собственные нужды? (выберите верный ответ)

1) АЭС; 2) ГЭС ; 3) КЭС; 4) ТЭЦ.

Ответ ____2______

78. Каково назначение обмотки ротора синхронных машин?

Обмотка ротора – обмотка возбуждения, к которой подводится постоянный ток от системы возбуждения. Вращаясь, ротор создает переменный магнитный поток, и в обмотке статора наводится эдс.

79. Какое охлаждение обмотки статора является наиболее эффективным?

Непосредственное охлаждение обмотки статора водой (благодаря высокой теплоемкости и небольшой вязкости).- ТВВ, Т3В

80. Какое охлаждение обмотки ротора является наиболее эффективным?

Непосредственное (форсированное) охлаждение ротора статора водой (благодаря высокой теплоемкости и небольшой вязкости). - Т3В

Самый мощный генератор ТВВ - 1200 имеет

81. По каким условиям выбираются провода РУ-110 кВ и выше?

1. По экономической плотности тока,

2. По допустимому току,

3. По условиям короны

4. Проверка на схлестывание при токах к.з. больше 20 кА

5. На термическое действие, кроме голых проводов на воздухе.

82. Чем отличается рубильник от разъединителя? Укажите не менее двух отличий.

1. Разъединитель применяется при напряжении больше 1 кВ, а рубульники до 1 кВ

2. У разъединителя нет специальных дугогасящих устройств, поэтому не может отключать токи, у рубильника есть дугогасительная камера, которая обеспечивает гашение дуги при отключении ном. токов.

83. В каком положении находится QВ на стороне НН-6-10 кВ подстанций в нормальном режиме? С какой целью?

Нормально включен для ограничения токов к.з.

84. В каких случаях в схемах ЭС следует определять КЗ с учетом различной удаленности источников от места КЗ?

Удаленная точка к.з. - это точка, находящиеся за двойным коэффициентом трансформации от рассматриваемого места к.з. Поэтому при к.з.в удаленной точке периодическая составляющая не изменяется и с первого момента к.з. принимает свое установившееся значение.

85. Чем отличается выключатель от разъединителя?

Выключатель предназначен для отключения и включения тока (как рабочего, так и тока к.з\), а разъединитель преднахзначен для отключения цепей БЕЗ ТОКА (не отключаает токи к.з, создает видимый разрыв)

86. Установите соответствие между типом и системой охлаждения турбогенератора.

1. Косвенное водородное Б А. ТФ

2. Непосредственное воздушное охлаждение обмотки ротора А Б. ТВ

3. Полное водяное В В. ТЗВ

4. Водородно-водяное Г Г. ТВВ