20.09.2019

Число авогадро молярная масса. Что скрывает число Авогадро, и как посчитать молекулы


Высчитать объём, молярную массу, количество газообразного вещества и относительную плотность газа помогает закон Авогадро в химии. Гипотеза была сформулирована Амедео Авогадро в 1811 году, а позже была подтверждена экспериментально.

Закон

Первым исследовал реакции газов Жозеф Гей-Люссак в 1808 году. Он сформулировал законы теплового расширения газов и объёмных отношений, получив из хлористого водорода и аммиака (двух газов) кристаллическое вещество - NH 4 Cl (хлорид аммония). Выяснилось, что для его создания необходимо взять одинаковые объёмы газов. При этом если один газ был в избытке, то «лишняя» часть после реакции оставалась неиспользованной.

Чуть позже Авогадро сформулировал вывод о том, что при одинаковых температурах и давлении равные объёмы газов содержат одинаковое количество молекул. При этом газы могут обладать разными химическими и физическими свойствами.

Рис. 1. Амедео Авогадро.

Из закона Авогадро вытекает два следствия:

  • первое - один моль газа при равных условиях занимает одинаковый объём;
  • второе - отношение масс одинаковых объёмов двух газов равно отношению их молярных масс и выражает относительную плотность одного газа по другому (обозначается D).

Нормальными условиями (н.у.) считаются давление Р=101,3 кПа (1 атм) и температура Т=273 К (0°С). При нормальных условиях молярный объём газов (объём вещества к его количеству) составляет 22,4 л/моль, т.е. 1 моль газа (6,02 ∙ 10 23 молекул - постоянное число Авогадро) занимает объём 22,4 л. Молярный объём (V m) - постоянная величина.

Рис. 2. Нормальные условия.

Решение задач

Главное значение закона - возможность проводить химические расчёты. На основе первого следствия закона можно вычислить количество газообразного вещества через объём по формуле:

где V - объём газа, V m - молярный объём, n - количество вещества, измеряемое в молях.

Второй вывод из закона Авогадро касается расчёта относительной плотности газа (ρ). Плотность высчитывается по формуле m/V. Если рассматривать 1 моль газа, то формула плотности будет выглядеть следующим образом:

ρ (газа) = M/V m ,

где M - масса одного моля, т.е. молярная масса.

Для расчёта плотности одного газа по другому газу необходимо знать плотности газов. Общая формула относительной плотности газа выглядит следующим образом:

D (y) x = ρ(x) / ρ(y),

где ρ(x) - плотность одного газа, ρ(y) - второго газа.

Если подставить в формулу подсчёт плотности, то получится:

D (y) x = M(х) / V m / M(y) / V m .

Молярный объём сокращается и остаётся

D (y) x = M(х) / M(y).

Рассмотрим практическое применение закона на примере двух задач:

  • Сколько литров СО 2 получится из 6 моль MgCO 3 при реакции разложения MgCO 3 на оксид магния и углекислый газ (н.у.)?
  • Чему равна относительная плотность CO 2 по водороду и по воздуху?

Сначала решим первую задачу.

n(MgCO 3) = 6 моль

MgCO 3 = MgO+CO 2

Количество карбоната магния и углекислого газа одинаково (по одной молекуле), поэтому n(CO 2) = n(MgCO 3) = 6 моль. Из формулы n = V/V m можно вычислить объём:

V = nV m , т.е. V(CO 2) = n(CO 2) ∙ V m = 6 моль ∙ 22,4 л/моль = 134,4 л

Ответ: V(СО 2) = 134,4 л

Решение второй задачи:

  • D (H2) CO 2 = M(CO 2) / M(H 2) = 44 г/моль / 2 г/моль = 22;
  • D (возд) CO 2 = M(CO 2) / M (возд) = 44 г/моль / 29 г/моль = 1,52.

Рис. 3. Формулы количества вещества по объёму и относительной плотности.

Формулы закона Авогадро работают только для газообразных веществ. Они не применимы к жидкостям и твёрдым веществам.

Что мы узнали?

Согласно формулировке закона равные объёмы газов при одинаковых условиях содержат одинаковое количество молекул. При нормальных условиях (н.у.) величина молярного объёма постоянна, т.е. V m для газов всегда равняется 22,4 л/моль. Из закона следует, что одинаковое количество молекул разных газов при нормальных условиях занимают одинаковый объём, а также относительная плотность одного газа по другому - отношение молярной массы одного газа к молярной массе второго газа.

Тест по теме

Оценка доклада

Средняя оценка: 4 . Всего получено оценок: 261.

Физическая величина, равная количеству структурных элементов (которыми являются молекулы, атомы и т.п.) на один моль вещества, называется числом Авогадро. Официально принятое на сегодняшний день его значение составляет NA = 6,02214084(18)×1023 моль−1, оно было утверждено в 2010 году. В 2011 были опубликованы результаты новых исследований, они считаются более точными, но на данный момент официально не утверждены.

Закон Авогадро имеет огромное значение в развитии химии, он позволил вычислять вес тел, которые могут менять состояние, становясь газообразными или парообразными. Именно на основе закона Авогадро начала свое развитие атомно-молекулярная теория, следующая из кинетической теории газов.

Более того, с помощью закона Авогадро разработан способ получения молекулярной массы растворенных веществ. Для этого законы идеальных газов были распространены и на разбавленные растворы, взяв за основу мысль, что растворенное вещество распределится по объему растворителя, как газ распределяется в сосуде. Также закон Авогадро дал возможность определить истинные атомные массы целого ряда химических элементов.

Практическое использование числа Авогадро

Константа используется при расчетах химических формул и в процессе составления уравнений химических реакций. С помощью нее определяют относительные молекулярные массы газов и число молекул в одном моле любого вещества.

Через число Авогадро вычисляется универсальная газовая постоянная, она получается путем умножения этой константы на постоянную Больцмана. Кроме того, умножив число Авогадро и элементарный электрический заряд, можно получить постоянную Фарадея.

Использование следствий закона Авогадро

Первое следствие закона гласит: «Один моль газа (любого) при равных условиях будет занимать один объем». Таким образом, в нормальных условиях объем одного моля любого газа равен 22,4 литра (эта величина называется молярным объемом газа), а используя уравнение Менделеева-Клапейрона можно определить объем газа при любом давлении и температуре.

Второе следствие закона: «Молярная масса первого газа равна произведению молярной массы второго газа на относительную плотность первого газа ко второму». Иными словами, при одинаковых условиях, зная отношение плотности двух газов, можно определить их молярные массы.

Во времена Авогадро его гипотеза была недоказуема теоретически, однако позволяла легко устанавливать экспериментальным путем состав молекул газа и определять их массу. Со временем под его эксперименты была подведена теоретическая база, и теперь число Авогадро находит применение

> Число Авогадро

Узнайте, чему равно число Авогадро в молях. Изучите соотношение количества вещества молекул и число Авогадро, броуновское движение, постоянная газа и Фарадея.

Количество молекул в моле именуют числом Авогадро, которое составляет 6.02 х 10 23 моль -1 .

Задача обучения

  • Разобраться в связи числа Авогадро и молях.

Основные пункты

  • Авогадро выдвинул предположение, что в случае единых давления и температуры равные газовые объемы вмещают одинаковое количество молекул.
  • Постоянная Авогадро выступает важным фактором, так как связывает другие физические постоянные и свойства.
  • Альберт Эйнштейн считал, что это число можно вывести из величин броуновского движения. Впервые измерить его удалось в 1908 году Жану Перрину.

Термины

  • Постоянная газа – универсальная постоянная (R), вытекающая из закона об идеальном газе. Ее добывают из постоянной Больцмана и числа Авогадро.
  • Постоянная Фарадея – величина электрического заряда на моль электронов.
  • Броуновское движение – случайное смещение элементов, формирующихся из-за ударов с отдельными молекулами в жидкости.

Если столкнулись с изменением количества вещества, то проще использовать единицу, отличную от количества молекул. Моль выступает базовой единицей в международной системе и передает вещество, вмещающее столько же атомов, сколько хранится в 12 г углерода-12. Это количество вещества именуют числом Авогадро.

Ему удалось установить связь между массами одного объема разных газов (в условиях одинаковой температуры и давления). Это способствует взаимосвязи их молекулярных масс

Число Авогадро передает количество молекул в одном грамме кислорода. Не забывайте, что это указание на количественную характеристику вещества, а не на независимый размер измерения. В 1811 году Авогадро догадался, что объем газа может выступать пропорциональным количеству атомов или молекул и на это не будет влиять природа газа (число – универсальное).

Нобелевскую премию по физике в 1926 году получил Жан Перинн, который смог вывести постоянную Авогадро. Так что число Авогадро равно 6.02 х 10 23 моль -1 .

Научное значение

Постоянная Авогадро играет роль важного связующего звена в макро- и микроскопических природных наблюдениях. Она как бы прокладывает мост для других физических постоянных и свойств. Например, налаживает связь между газовой постоянной (R) и Больцмана (k):

R = kN A = 8.314472 (15) Дж моль -1 K -1 .

А также между постоянной Фарадея (F) и элементарным зарядом (e):

F = N A e = 96485.3383 (83) C моль -1 .

Вычисление постоянной

Определение числа влияет на вычисление массы атома, которую добывают через деление массы моля газа на число Авогадро. В 1905 году Альберт Эйнштейн предлагал вывести ее, основываясь на величинах броуновского движения. Именно эту идею и протестировал в 1908 году Жан Перрин.

Атомная единица массы. Число Авогадро

Вещество состоит из молекул. Под молекулой мы будем понимать наименьшую частицу данного вещества, сохраняющую химические свойства данного вещества.

Читатель : А в каких единицах измеряется масса молекул?

Автор : Массу молекулы можно измерять в любых единицах массы, например в тоннах, но поскольку массы молекул очень малы: ~10 –23 г, то для удобства ввели специальную единицу – атомную единицу массы (а.е.м.).

Атомной единицей массы называется величина, равная -й массы атома углерода 6 С 12 .

Запись 6 С 12 означает: атом углерода, имеющий массу 12 а.е.м. и заряд ядра – 6 элементарных зарядов. Аналогично, 92 U 235 – атом урана массой 235 а.е.м. и зарядом ядра 92 элементарных заряда, 8 О 16 – атом кислорода массой 16 а.е.м и зарядом ядра 8 элементарных зарядов и т.д.

Читатель : Почему в качестве атомной единицы массывзяли именно (а не или ) часть массы атома и именно углерода, а не кислорода или плутония?

Экспериментально установлено, что 1 г » 6,02×10 23 а.е.м.

Число, показывающее, во сколько раз масса 1 г больше 1 а.е.м, называется числом Авогадро : N A = 6,02×10 23 .

Отсюда

N А × (1 а.е.м) = 1 г. (5.1)

Пренебрегая массой электронов и различием в массах протона и нейтрона, можно сказать, что число Авогадро приблизительно показывает, сколько надо взять протонов (или, что почти то же самое, атомов водорода), чтобы образовалась масса в 1 г (рис. 5.1).

Моль

Масса молекулы, выраженная в атомных единицах массы, называется относительной молекулярной массой .

Обозначается М r ­ (r – от relative – относительный), например:

12 а.е.м, = 235 а.е.м.

Порция вещества, которая содержит столько же граммов данного вещества, сколько атомных единиц массы содержит молекула данного вещества, называется молем (1 моль) .

Например: 1) относительная молекулярная масса водорода Н 2: , следовательно, 1 моль водорода имеет массу 2 г;

2) относительная молекулярная масса углекислого газа СО 2:

12 а.е.м. + 2×16 а.е.м. = 44 а.е.м.

следовательно, 1 моль СО 2 имеет массу 44 г.

Утверждение. Один моль любого вещества содержит одно и то же число молекул: N А = 6,02×10 23 шт.

Доказательство . Пусть относительная молекулярная масса вещества М r (а.е.м.) = М r × (1 а.е.м.). Тогда согласно определению 1 моль данного вещества имеет массу М r (г) = М r ×(1 г). Пусть N – число молекул в одном моле, тогда

N ×(масса одной молекулы) = (масса одного моля),

Моль – основная единица измерения в СИ.

Замечание . Моль можно определить иначе: 1 моль – это N А = = 6,02×10 23 молекул данного вещества. Тогда легко понять, что масса 1 моля равна М r (г). Действительно, одна молекула имеет массу М r (а.е.м.), т.е.

(масса одной молекулы) = М r × (1 а.е.м.),

(масса одного моля) = N А ×(масса одной молекулы) =

= N А × М r × (1 а.е.м.) = .

Масса 1 моля называется молярной массой данного вещества.

Читатель : Если взять массу т некоторого вещества, молярная масса которого равна m, то сколько это будет молей?

Запомним:

Читатель : А в каких единицах в системе СИ следует измерять m?

, [m] = кг/моль.

Например, молярная масса водорода

Доктор физико-математических наук Евгений Мейлихов

Введение (в сокращении) к книге: Мейлихов Е. З. Число Авогадро. Как увидеть атом. - Долгопрудный: ИД «Интеллект», 2017.

Итальянский учёный Амедео Авогадро - современник А. С. Пушкина - был первым, кто понял, что количество атомов (молекул) в одном грамм-атоме (моле) вещества одинаково для всех веществ. Знание же этого числа открывает путь к оценке размеров атомов (молекул). При жизни Авогадро его гипотеза не получила должного признания.

Истории числа Авогадро посвящена новая книга Евгения Залмановича Мейлихова, профессора МФТИ, главного научного сотрудника НИЦ «Курчатовский институт».

Если бы в результате какой-либо мировой катастрофы все накопленные знания оказались бы уничтоженными и к грядущим поколениям живых существ пришла бы только одна фраза, то какое утверждение, составленное из наименьшего количества слов, принесло бы наибольшую информацию? Я считаю, что это - атомная гипотеза: …все тела состоят из атомов - маленьких телец, находящихся в беспрерывном движении.
Р. Фейнман. Фейнмановские лекции по физике

Число Авогадро (константа Авогадро, постоянная Авогадро) определяется как количество атомов в 12 граммах чистого изотопа углерода-12 (12 C). Обозначается оно обычно как N A , реже L. Значение числа Авогадро, рекомендованное CODATA (рабочая группа по фундаментальным постоянным) в 2015 году: N A = 6,02214082(11)·10 23 моль -1 . Моль - это количество вещества, которое содержит N A структурных элементов (то есть столько же элементов, сколько атомов содержится в 12 г 12 C), причем структурными элементами обычно являются атомы, молекулы, ионы и др. По определению атомная единицы массы (а.е.м.) равна 1/12 массы атома 12 C. Один моль (грамм-моль) вещества имеет массу (молярную массу), которая, будучи выраженной в граммах, численно равна молекулярной массе этого вещества (выраженной в атомных единицах массы). Например: 1 моль натрия имеет массу 22,9898 г и содержит (примерно) 6,02 · 10 23 атомов, 1 моль фторида кальция CaF 2 имеет массу (40,08 + 2·18,998) = 78,076 г и содержит (примерно) 6,02·10 23 молекул.

В конце 2011 года на XXIV Генеральной конференции по мерам и весам единогласно принято предложение определить моль в будущей версии Международной системы единиц (СИ) таким образом, чтобы избежать его привязки к определению грамма. Предполагается, что в 2018 году моль будет определён непосредственно числом Авогадро, которому будет приписано точное (без погрешности) значение, базирующееся на результатах измерений, рекомендованных CODATA. Пока же число Авогадро является не принимаемой по определению, а измеряемой величиной.

Эта константа названа в честь известного итальянского химика Амедео Авогадро (1776-1856), который хотя сам этого числа и не знал, но понимал, что это очень большая величина. На заре развития атомной теории Авогадро выдвинул гипотезу (1811 год), согласно которой при одинаковых температуре и давлении в равных объёмах идеальных газов содержится одинаковое число молекул. Позже было показано, что эта гипотеза есть следствие кинетической теории газов, и сейчас она известна как закон Авогадро. Его можно сформулировать так: один моль любого газа при одинаковых температуре и давлении занимает один и тот же объём, при нормальных условиях равный 22,41383 л (нормальным условиям соответствуют давление P 0 = 1 атм и температура T 0 = 273,15 К). Эта величина известна как молярный объём газа.

Первую попытку найти число молекул, занимающих данный объём, предпринял в 1865 году Й. Лошмидт. Из его вычислений следовало, что количество молекул в единице объёма воздуха равно 1,8·10 18 см -3 , что, как оказалось, примерно в 15 раз меньше правильного значения. Через восемь лет Дж. Максвелл привёл гораздо более близкую к истине оценку - 1,9·10 19 см -3 . Наконец в 1908 году Перрен даёт уже приемлемую оценку: N A = 6,8·10 23 моль -1 числа Авогадро, найденную из экспериментов по броуновскому движению.

С тех пор было разработано большое число независимых методов определения числа Авогадро, и более точные измерения показали, что в действительности в 1 см 3 идеального газа при нормальных условиях содержится (примерно) 2,69·10 19 молекул. Эта величина называется числом (или постоянной) Лошмидта. Ей соответствует число Авогадро N A ≈ 6,02·10 23 .

Число Авогадро - одна из важных физических постоянных, сыгравших большую роль в развитии естественных наук. Но является ли она «универсальной (фундаментальной) физической постоянной»? Сам этот термин не определён и обычно ассоциируется с более или менее подробной таблицей числовых значений физических констант, которые следует использовать при решении задач. В связи с этим фундаментальными физическими постоянными зачастую считаются те величины, которые не являются константами природы и обязаны своим существованием всего лишь выбранной системе единиц (таковы, например, магнитная и электрическая постоянные вакуума) или условным международным соглашениям (такова, например, атомная единица массы). В число фундаментальных констант часто включают многие производные величины (например, газовую постоянную R, классический радиус электрона r e = e 2 /m e c 2 и т. п.) или, как в случае с молярным объёмом, значение некоторого физического параметра, относящегося к специфическим экспериментальным условиям, которые выбраны лишь из соображений удобства (давление 1 атм и температура 273,15 К). С этой точки зрения число Авогадро есть истинно фундаментальная константа.

Истории и развитию методов определения этого числа и посвящена настоящая книга. Эпопея длилась около 200 лет и на разных этапах была связана с многообразными физическими моделями и теориями, многие из которых не потеряли актуальности и по сей день. К этой истории приложили руку самые светлые научные умы - достаточно назвать А. Авогадро, Й. Лошмидта, Дж. Максвелла, Ж. Перрена, А. Эйнштейна, М. Смолуховского. Список можно было бы и продолжить...

Автор должен признаться, что идея книги принадлежит не ему, а Льву Фёдоровичу Соловейчику - его однокашнику по Московскому физико-техническому институту, человеку, который занимался прикладными исследованиями и разработками, но в душе остался физиком-романтиком. Это человек, который (один из немногих) продолжает «и в наш жестокий век» бороться за настоящее «высшее» физическое образование в России, ценит и в меру сил пропагандирует красоту и изящество физических идей. Известно, что из сюжета, который А. С. Пушкин подарил Н. В. Гоголю, возникла гениальная комедия. Конечно, здесь не тот случай, но, может быть, и эта книга покажется кому-то полезной.

Эта книга - не «научно-популярный» труд, хотя и может показаться таковым с первого взгляда. В ней на некотором историческом фоне обсуждается серьёзная физика, используется серьёзная математика и обсуждаются довольно сложные научные модели. Фактически книга состоит из двух (не всегда резко разграниченных) частей, рассчитанных на разных читателей - одним она может показаться интересной с историко-химической точки зрения, а другие, возможно, сосредоточатся на физико-математической стороне проблемы. Автор же имел в виду любознательного читателя - студента физического или химического факультета, не чуждого математики и увлечённого историей науки. Есть ли такие студенты? Точного ответа на этот вопрос автор не знает, но, исходя из собственного опыта, надеется, что есть.

Информация о книгах Издательского дома «Интеллект» - на сайте www.id-intellect.ru