14.03.2019

Плазма для резки металла. Принцип и технология плазменной резки металла. Нужна ли механизация


Одним из популярных видов обработки металла является его резка. Существует множество способов получить требуемую форму из цельного листа, но в этом материале рассмотрим принцип работы плазменной резки.

Плазменная резка. Фактически – золотая середина. Преимущества резки металла плазмой сочетают в себе все перечисленные технологии. Главное достоинство – нет ограничений по типу обрабатываемого материала. Разве что по толщине.

  • алюминиевые сплавы 120 мм
  • медные сплавы 80 мм
  • сталь 50 мм
  • чугун 90 мм

Оборудование бывает разное – от промышленного до бытового, так что технология доступна всем. Рассмотрим ее подробнее.

Плазменная резка металла – принцип работы

В качестве резца выступает двухкомпонентная среда:

  • Электрическая дуга, работающая по классической схеме – разряд между катодом и анодом. Причем в качестве анода может выступать сам материал, если он является проводником.
  • Газовая дуга. Нагреваясь под воздействием электрической дуги (температура достигает 25000º С), газ ионизируется и превращается в проводник электротока.

Принцип работы плазменной резки подробно показан в этом видео.

В результате образуется плазма, которая подается под высоким давлением в зону реза. Эта раскаленная струя газа буквально испаряет металл, причем только в рабочей зоне. Несмотря на то, что температура плазменной резки измеряется десятками тысяч градусов, воздействия на пограничную зону практически нет.

Важно! Правильно выбранная скорость, позволяет получить очень узкий разрез без повреждения края материала.

Источник плазменной резки – плазмотрон.


Его задача зажечь дугу, поддерживать рабочую температуру, и выдуть из зоны реза расплавленный металл. Поскольку плазморезы предназначены для обработки любых твердых материалов, включая диэлектрики – образование электрической дуги производится двумя способами:


На рисунке а) изображены резак прямого действия. Катодный узел (8) вместе с закрепленным катодом (6) являются одним из электродов. В качестве второго электрода (анода) выступает обрабатываемая деталь (4) – металл, обладающий хорошей электропроводимостью.

К нему подводится питающий кабель плазмотрона. Наконечник плазменной резки (5) в данной схеме выполняет роль корпуса. От отделен от катода изолятором (7) . Газ подается внутрь по штуцеру (1) и формирует струю плазмы, состоящую из электрической (2) и газовой (3) дуги .

Такие приборы отличить несложно – они обозначаются как «PAC» (западная классификация). Плазменная резка является наиболее современной технологией, причем обрабатываться могут не только металлы, но и иные материалы, в том числе, и не проводящие электрический ток.

О принципе работы резаков этого типа, их устройстве и многом другом, что будет полезно знать начинающему сварщику, мы и поговорим.

Что представляет собой плазма?

Это газ, который при значительном подъеме температуры в рабочей зоне (порядка 25 000 ºС) ионизируется и становится токопроводящей средой. Он под высоким давлением, струей, подается к обрабатываемой детали. По сути, данная резка – это наложение (объединение, сочетание) двух дуг; одна из них – газовая, другая – электрическая. Формирование «рабочей» дуги происходит в устройстве, которое именуется плазмотроном.

На практике применяются 2 методики раскроя материалов, в зависимости от того, что обрабатывается – металл или диэлектрик. Исходя из этого, плазморезы имеют небольшое отличие в конструктивном исполнении горелки.

Резаки прямого воздействия

Они используются, если подвергающийся раскрою образец хорошо проводит ток. В этом случае деталь становится одним из элементов эл/цепи, и между ней и горелкой возникает искра. Такую резку называют плазменно-дуговой, и она применяется для .

Резаки косвенного воздействия

Данное оборудование стоит намного дороже, так как с его помощью можно производить резку материалов, отличающихся чрезвычайно малой электропроводностью (в том числе, и диэлектриков). В таких моделях в резаке помещается электрод, который и «отвечает» за образование искры. Плазменный столб немного «выносится» за габариты сопла, и разделение заготовки на части обеспечивается его энергией (резка струей).

Устройство плазмотрона может несколько отличаться, в зависимости от модели и производителя, но общая схема практически не меняется.

Принцип работы плазменного резака заключается в том, что сформированная в канале подаче газа струя воздуха, сжатого до установленного предела, поступает в рабочую зону, где уже находится предварительно зажженная электрическая дуга. Она и преобразует его в плазму. Что это дает?

  • Ток режет заготовку методом плавления материала.
  • Плазменная струя удаляет из области реза частички расплавленного металла, то есть производит зачистку рабочей зоны.
  • Нагрев детали – незначительный и локальный.

Автор рассмотрел лишь простейшую конструкцию устройства для пламенной резки и дал общие сведения о процессе. Существует несколько модификаций приборов. Например, по способу охлаждения форсунки – воздушное или жидкостное. По используемым газам, так как кроме воздуха это может быть чистый кислород, аргон, водяной пар или иное. Но общий принцип работы читателю уже должен быть понятен. Все остальное – конструктивные особенности, с которыми при желании можно разобраться самостоятельно.

Какие возможности дает плазменная резка?

  • Повышенная скорость операции.
  • Работа с любыми сплавами и металлами.
  • Предельная чистота и правильная геометрия кромок.
  • Вероятность температурной деформации деталей полностью исключается, даже если рез ведется человеком без практического опыта в данной сфере.
  • Безопасность работы.
  • Выполнение фигурной раскройки образцов.

Полезная информация

Сопло

Его сечение влияет на точность реза. Чем оно меньше, тем более сложные технологические операции можно выполнять. В том числе, и фигурную . А вот от длины сопла зависит скорость ведения работы. При выборе плазмореза необходимо смотреть на соотношение этих параметров (L/d). Оптимальное значение в пределах 1,55 – 1,75.

Электроды

Они подбираются для резаков косвенного действия. Лучшими считаются образцы, сделанные из гафния (кстати, таких изделий в продаже большинство).

Компрессор

От того, насколько хорошо он работает, зависит качество и скорость реза. Данное устройство должно подавать в рабочую зону не только нагретый до высокой температуры и сжатый воздух, но и осушенный и «чистый», без каких-либо примесей. Если аппарат категории PAC покупается для плазменной резки металлов в бытовых условиях или для небольшой мастерской, то предпочтение нужно отдавать резакам, оснащенным встроенным компрессором. В нем уже есть и осушитель, и схема очистки воздушного потока.

Как выбрать плазморез для бытового использования

Питание

Применительно к этим устройствам разницы, 1 фаза или 3, никакой нет. Но если речь идет о бытовом плазменном резаке, то целесообразнее брать модель, которую можно запитать от обычной розетки.

Мощность

Она определяется по силе тока в дуге. 60 А вполне достаточно, чтобы резать металлы толщиной до 30 мм. Но как показывает практика, для дома или небольшой специализированной мастерской приобретать плазморезы с I ˃ 100 А не имеет смысла. Вряд ли кто станет кроить образцы толще 3 – 4 см, если это не металлообрабатывающее производство, а стоимость таких резаков достаточно высокая. Принцип оценки целесообразности простой – подобные устройства «на вырост» не покупаются.

Продолжительность непрерывной работы

Обозначается как ПВ, в процентах. Для бытового применения достаточно резака на 55 (±5)%, что соответствует примерно 5 – 6 минутам беспрерывной эксплуатации.

Сопло

О его параметрах уже сказано. Конкретные данные отражены в документации на плазменный резак. Остается добавить, что следует сразу же уточнить, есть ли возможность ремонта этого изделия своими руками и что из необходимого имеется в комплекте. В случае замены – где можно приобрести в розницу эту часть резака.

Авто считает, что устройство для плазменной резки металлов будет чрезвычайно полезно любому хозяйственному мужчине. Если поискать, то можно купить ручную модель стоимостью порядка 18 000 – 20 000 рублей. Не так уж и дорого для того, кто часто работает с металлами, если учесть, от скольких проблем она избавит. Вечно ломающиеся сверла и полотна ножовок, стачивающиеся диски для УШМ, перетаскивание с места на место газовых баллонов (которые еще нужно и регулярно заправлять), поиск электродов определенной марки – все это хорошо знакомо домашним мастерам.

Машиностроение и тяжелую промышленность нельзя представить без сварки и резки металлических поверхностей. На крупных производственных объектах, занимающихся обработкой, применяется специальная резка металла плазмой.

Плазма, что это?

Под плазменным элементом понимают токопроводящий газ, ионизирующийся под действием высоких температур. Значение температурного показателя в рабочей зоне достигает 25 000 – 30 000 градусов. Газ подается к обрабатываемому изделию под давлением, то есть струей.

Эта разновидность резки подразумевает сочетание двух дуг – газовой и электрической. Источник плазменной резки производится в специальном приборе, называемым плазмотроном.

Как устроен плазморез?

Плазменный раскрой металла включает нескольких составных систем:

  • энергоисточник;
  • резак;
  • компрессорная установка или баллон с газом для подачи воздуха;
  • соединительные кабели.

Энергоисточник

В качестве энергобазы может выступать:

  1. Инвертор. Имеет массу достоинств: обеспечивает стабильность образования дуги; высокий показатель КПД, в отличие от трансформатора; легкий вес и невысокая стоимость; возможность применения в малодоступном месте. Единственным минусом системы является то, что он неспособен резать детали более 30 мм.
  2. Трансформатор. Основным достоинством устройства является устойчивость к перепадам напряжения электросети. Также можно отметить, что он дает резать металлические детали большой толщины. Главный недостаток – существенная масса, низкий КПД.

Плазмотрон

Это устройство представляет собой электроплазменный резак, благодаря которому разрезается металлическая деталь. Он считается главным «механизмом» плазмореза.

Плазмотрон включает:

  • Рабочий электрод;
  • Рабочее сопло;
  • Изолирующий элемент, обладающий высокой термоустойчивостью.

Горелка плазмореза

Необходимо предварительно определиться с материалом, который необходимо прорезать и условиями работы.

Стоит отметить, что системы с медным соплом обладают значительной прочностью и быстро охлаждаются воздушными массами. А это очень хорошо.

На рукояти плазморезов подобного вида есть возможность закрепить вспомогательные элементы, поддерживающие насадку сопла на требуемой дистанции. Это облегчает процесс эксплуатирования.

Для разреза тонкого металла следует выбрать установку, в горелку которой поступает кислород, а для толстого изделия – азот.

Показатели мощности

Главным принципом в работе плазменной резки считается мощность. Выбирая мощность агрегата необходимо учитывать свойства изделия, с чем придется работать. По этому признаку будут отличаться габариты сопла и вид газообразной смеси.

Чтобы справиться с изделием из металла 30 мм достаточно выбрать мощность агрегата 50-90А.

Если толщина реза превышает 30 мм, то профессионалы советуют приобрести плазморез с мощностью 100-170А.

Покупая агрегат, следует учесть силу тока и напряжение, которое он способен выдержать.

Быстрота, время, затраченное на разрез

Данное значение измеряется в см, которые разрезает агрегат за 1 или 5 мин

Если на устройстве указывается, что длительность эксплуатирования равна 80 процентам, то этот показатель означает, что резак будет работать 8 мин, а далее 2 мин аппаратура будет остывать.

Если при эксплуатировании потребуется делать длинные разрезы, то рационально выбирать устройства с увеличенной продолжительностью работы.

Раскрой струей плазмы

Принцип оптимальной работы плазменной резки заключается в разрезании металлических деталей струей плазмы, не проводящей электричество. При раскрое этим способом дуга возникает между насадкой плазмотрона и рабочим электродом, а возделываемое изделие в электрической цепочке не участвует. Для разреза детали применяется плазменная струя.

Плазменно – дуговая резка характеризуется тем, что воздействию подвергаются токопроводящие элементы. Дуга при этом способе образуется между возделанной деталью и рабочим электродом, ее основание совмещается с электроплазменным потоком. Струя возникает в результате поступления газа и последующей его ионизацией.

Метод плазменно-дуговой резки используется при:

  • изготовление изделий с различными фигурными очертаниями;
  • проделывание сквозных проемов в металлическом элементе;
  • производство деталей для сваривания, штамповки и контактного возделывания;
  • плазменная резка труб;
  • литейная обработка.

Плазменно-дуговая резка достаточно эффективна и хорошо себя зарекомендовала в возделывании металлов.

Разновидности плазменного раскроя

Разрезание поверхностей из металла с использованием плазмы различают на несколько типов, все зависит от атмосферы процесса:

  • Простой способ. При разрезе применяется воздух либо азот и электричество. Длиновые показатели электрической дуги ограничены. Этот метод применим для стали с низким содержанием вспомогательных примесей, то есть низколегированного типа. Газообразный кислород выступает в роли режущего компонента. Для данного метода характерна – ровная кромка и отсутствие заусениц. Основное использование - ручная резка.
  • Смешение двух газов. Одна газовая составляющая плазменной резки направляется на возникновение плазмы, другая выполняет защитную функцию от неблагоприятного воздействия атмосферы. Качественные характеристики разрезания металла увеличиваются.
  • С водной защитой. Эта модификация предполагает применение в технологии воды, вместо газообразного элемента. Водная основа обеспечивает оптимальное охлаждение сопла и заготовительного элемента. Все вредные вещества поглощаются водными массами.
  • Со впрыскиванием воды. Газ направляется на образование плазмы, а водные массы в вихревую дугу. Это позволяет увеличить ее сжатие, тем самым повышая плотность и температурные показатели.

Технологические особенности резки

Как работает плазменная резка? Принцип работы плазмореза заключается в локальном нагревании поверхности металла в зоне раздела и его последующем плавлении. Нагревание происходит потоком плазмы, который формируется путем специального оборудования. Технологические особенности получения плазмы выглядят так:

  • На первом этапе образовывается электродуга, разжигающееся между электродом устройства и соплом. Температурные показатели могут достигать 5 тысяч градусов.
  • Подается газовый элемент, повышая температурное значение уже до 20 тысяч.
  • Происходит взаимодействие газа и электрической дуги – ионизация. Температура увеличивается до 30 тысяч градусов.

Для полученной струи плазмы для резки металла плазмой характерно: яркая потоковая вспышка и усиленный выход из сопла устройства. Струя разогревает поверхность и расплавляет деталь в точечной области воздействия, в результате чего выполняется резка металла плазмой.

Как осуществляется ручная электроплазменная разрезка?

Принцип плазменной резки металла начинается с подключения устройства, тем самым собирая все составные части в единую систему. Далее инвертор либо трансформатор подключают к сети переменного тока и металлической детали.

Осуществление резки предусматривает удерживание сопла агрегата к обрабатываемой поверхность на дистанцию 4 см и вспышка дежурной дуги, вследствие которой будет возникать ионизация газа. Далее в сопло поступает газообразный воздух, в результате чего должен сформироваться электроплазменный поток.

Стоит отметить, что когда электроплазменная струя сформирована, первоначальная дуга отключается автоматом. Задача вспомогательной струи заключается в поддержание ионизации потока плазменного компонента. Бывают случаи, когда рабочая дуга угасает, значит нужно перекрыть доступ газа в сопло и повторить процедуру заново.

Плюсы и минусы плазменного раскроя

К основным положительным характеристикам применения плазменной системы относят следующие аспекты:

  • Универсальность технологического процесса.
  • Автоматическая плазменная резка.
  • Высокие показатели скорости операции при работе с материалами средней и малой толщины.
  • Высокоточный и качественный рез, исключив дополнительных механических операций.
  • При работе с электроплазменной средой практически исключается загрязнение воздуха.
  • Нет необходимости предварительного разогрева поверхности, что снижает временные рамки прожига.
  • Выполняемые работы считаются относительно безопасными, так как нет необходимости волочить за собой баллоны с газом, которые являются взрывоопасными.

К минусам электроплазменной технологии относят:

  • Ценовая составляющая плазмотрона и его конструкционные особенности, что повышает себестоимость выполнения работ по резке металла.
  • Незначительная толщина прореза.
  • Высокие показатели шума, так как газовый элемент из плазмотрона выходит на околозвуковой скорости.
  • Необходимо качественное техническое обслуживание агрегата.
  • Если в качестве газообразного элемента используется азот, то это способствует выделению большого количества вредных веществ в атмосферу.
  • К конфигурации плазмотрона нельзя подключить дополнительный плазменный резак для ручной обработки металлической поверхности.

Также существенным недостатком при работе плазменной установки считается отклонение от перпендикуляра резания на угол не более 50 градусов.

Основные аспекты правил безопасности

Технология плазменной резки металла является опасной для рабочего и окружающих. При осуществлении операции профессионалы своего дела рекомендуют использовать защитный костюм сварщика и специальный щиток с затемненными стеклами. При разрезе металлических поверхностей возможно воздействие нежелательных эффектов:

  • Тепловой микроклимат в зоне работающего человека;
  • Облучение ультрафиолетовым спектром;
  • Влияние расплавленного металла;
  • Увеличенное напряжение;

Температурные показатели при резке плазмой достигают тысяч градусов по Цельсию. Человек может получить ожоги во время проведения резки. Ожоговый риск снижается, если процесс автоматизирован. Излучение, которое возникает в период эксплуатирования устройства способно вызвать ожоги глазного сектора работающего. Чтобы это не произошло достаточно пользоваться маской либо щитком с защитными темными стеклами. На практике щиток менее комфортен, так как приходится постоянно придерживать рукой, а это сковывает и ограничивает движения сварщика.

Техника безопасности на месте резки металла плазмой включает в себя внимательный осмотр оборудования на наличие неисправностей. Стоит помнить, что неисправным устройством пользоваться нельзя, даже если очень нужно. При проведении резания не следует стучать плазмотроном для удаления расплавленных остатков. В противном случае он повредится. Также во время проведения работ необходимо постоянного контролировать напряжение сети.

Плазменно-дуговая резка и раскрой металлических поверхностей струей плазмы достаточно широко используются в промышленном секторе. Плазменная современная резка труб с ЧПУ по праву является незаменимым оборудованием для производственных компаний, так как все можно сделать с высокой точностью и производительностью. Плазморезом можно пользоваться для разделения различных элементов. Что важно, то устройство подходит и для спаивания. Например, с его помощью проводятся различные операции закалки, зачистки, а также сваривание припоями. Металлическая поверхность в этой ситуации быстрее охлаждается, нежели при стандартной резке кислородом.

Внешние особенности

При плазморезке собственными силами следует обратить внимание на компактность прибора. Ими просто управлять и не требуют особого опыта. Если чувствуете неуверенность в своих силах, то рекомендуем посмотреть обучающее видео.

Применение плазменной резки имеет широкое распространение. Она используется в машиностроении, коммунальной отрасли, при строительстве судов, изготовлении конструкций из металла. В основе плазменной резки лежит принцип, при котором ионизированный воздух начинает проводить электрический ток.

Разделку металла осуществляют плазма, представляющая собой разогретый ионизированный воздух, и плазменная дуга. Характерные для плазменной резки металла принципы работы будут описаны далее.

Что представляет собой плазменная резка

При резке металла плазмой происходит усиление электродуги. Это возможно благодаря действию газа, находящегося под давлением. Режущий элемент разогревается до высоких температурных значений, результатом чего становится высококачественная и быстрая разрезка металла.

В отличие от ее плазменный аналог не способствует перегреванию всего обрабатываемого изделия. Высокая температура возникает непосредственно в месте разделки металла, а остальные части изделия не прогреваются и не деформируются.

Принцип плазменной резки металла основывается на:

  • выдаче необходимого напряжения источником тока (стандартное напряжение - 220 В, повышенное - 380 В, для резки металла на крупных предприятиях);
  • передаче тока к плазмотрону (горелке) через кабели, в результате между анодом и катодом загорается электродуга;
  • подаче компрессором по шлангам воздушных потоков в устройство;
  • действии внутри плазмотрона завихрителей, направляющих потоки к электрической дуге;
  • прохождении вихревых потоков воздуха через электродугу и создании ионизирующего воздуха, разогретого до высоких температур;
  • замыкании рабочей дуги между электродом и обрабатываемой поверхностью при поднесении плазмотрона к ней;
  • действии воздуха под большим давлением и высокой температурой на обрабатываемое изделие.

В результате получается разрез небольшой толщины с минимальными наплывами.

Дуга способна гореть в дежурном режиме, если аппарат не используется в конкретное время. При дежурном режиме горение поддерживается автоматически. При поднесении горелки к изделию дуга мгновенно переходит в рабочий режим и моментально разрезает металл.

После выключения аппарата производится его продувание для удаления мусора и остужения электродов.

Электродуга универсальна в своем действии. Она способна не только разрезать, но и сваривать металлические изделия. Для сваривания применяют присадочную проволоку, подходящую к конкретному типу металла. Через дугу пропускают не воздух, а инертный газ.

Структура плазмореза

Называют аппарат, которым осуществляется резка металлических изделий различными способами. В устройство агрегата входят элементы:

  • источник электрического питания;
  • компрессор;
  • плазмотрон;
  • кабель-шланги.

В качестве источников питания выступают несколько устройств:

  • инвертор;
  • трансформатор.

Каждое из устройств имеет ряд достоинств и недостатков. К достоинствам инвертора относятся:

  • дешевизна;
  • стабильность горения дуги;
  • удобство при применении в участках с затрудненным доступом;
  • небольшой вес;
  • высокий КПД, превышающий аналогичный показатель для трансформатора на 30%;
  • экономичность.

Какие есть недостатки и ограничения?

Основным недостатком инвертора является невозможность его использования для нарезания металлических изделий большой толщины.

Трансформатор эффективно используется при резке толстостенного металла, с которым не справится инвертор. Он выдерживает перепады сетевого напряжения, но отличается низким КПД. Неудобны трансформаторы по причине своего большого веса.

Компрессор представляет собой устройство, подающее воздух к электродуге. Механизм способствует созданию вихревых воздушных потоков, направляемых к ней. Компрессором обеспечивается четкое нахождение катодного пятна дуги в центре электрода. При нарушении процесса возникают последствия в виде:

  • образования сразу двух электродуг;
  • слабого горения дуги;
  • поломки плазмотрона.

Через компрессор в процессе работы обычного непромышленного плазмореза пропускается только сжатый воздух. Он создает плазму и охлаждает электроды. На промышленных агрегатах применяют смеси газов на основе кислорода, гелия, азота, аргона, водорода.

Плазмотрон выполняет основную функцию аппарата - режет изделие. В его устройство входят:

  • охладитель;
  • электрод;
  • колпак;
  • сопло.

Внутри плазмотрона содержится гафниевый электрод, возбуждающий электродугу. Применяются циркониевые, реже бериллиевые и ториевые электроды. Их оксиды токсичны и даже радиоактивны.

Через плазмотронное сопло проходит плазменная струя, разрезающая изделия. От его диаметра зависят качество резки, технология, скорость работы агрегата, ширина разреза и скорость охлаждения.

Через кабель проходит ток, идущий от инвертора или трансформатора. По шлангам движется сжатый воздух, образующий плазму в плазмотроне.

Понять, как работает , позволяет последовательное изучение этапов плазменной резки металлов:

  • нажимается кнопка розжига, приводящая к началу подачи тока от трансформатора или инвертора к плазмотрону;
  • внутри плазмотрона появляется дежурная электродуга с температурой 70000С;
  • происходит зажигание дуги между наконечником сопла и электродом;
  • происходит поступление сжатого воздуха в камеру, который проходит через дугу, нагреваясь и ионизируясь;
  • в сопле происходит обжатие поступающего воздуха, вырывающегося из него единым потоком со скоростью 3 м/с;
  • обжатый воздух, вырывающийся из сопла, разогревается до 300000С, превращаясь в плазму;
  • при соприкосновении плазмы с изделием дежурная дуга гаснет, зажигается режущая (рабочая);
  • рабочая дуга плавит металл в месте воздействия, результатом становится рез;
  • части расплавленного металла сдуваются с изделия воздушными потоками, вырывающимися из сопла.

Любая технология плазменной резки металла зависит от скорости реза и расхода воздуха. Высокая скорость способствует появлению более тонкого реза. При низкой скорости и высокой силе тока ширина реза становится больше.

При усиленном расходе воздуха происходит увеличение скорости резки. Чем больше диаметр сопла, тем меньше скорость и шире рез.

Методики резки

На практике используются два способа нарезания металла плазмой:

  • струей из плазмы;
  • плазменно-дуговым способом.

Нарезание плазменной струей нашло применение при обработке неметаллических изделий, не способных проводить электроток. При указанном способе обработки изделие не является частью электросхемы. Горение дуги происходит между электродом и наконечником плазмотрона. Изделие разрезается плазменной струей.

Применение плазменно-дугового способа широко. Он используется при:

  • нарезании профилей, труб;
  • изготовлении изделий с прямолинейными контурами;
  • обработке литья;
  • формировании отверстий в металле;
  • производстве сварочных заготовок.

Горение дуги происходит между электродом и изделием. Столб дуги совмещается с плазменной струей. Струя возникает за счет продуваемого через работающий компрессор газа, сильно нагревающегося и ионизирующегося в процессе. Газ способствует образованию плазмы, а за счет его высокой температуры увеличивается скорость нарезания обрабатываемого металла. Данный метод подразумевает применение дуги постоянного тока с прямой полярностью.

Разновидности резки плазмой

Выделяют три разновидности процесса:

  • простая - с применением электротока и воздуха (альтернативой является азот);
  • с применением воды, выполняющей функцию охлаждения плазмотрона, его защиты и поглощения выделений;
  • с применением защитного газа, повышающего качество реза.

Плюсы и минусы плазморезки

Плюсы Минусы
Универсальность применения (предназначена для обработки любых металлических изделий при условии, если подобрано устройство правильной мощности с требуемым давлением воздуха). Небольшой диапазон толщины реза (не более 100 мм).
Минимальный вред окружающей среде. Вред окружающей среде и здоровью (мастер, работавший с плазморезом, для которого в качестве газа предусмотрен азот, получает серьезное отравление).
Высокая производительность, уступающая только лазерной резке, но выигрывающая в себестоимости. Высокая цена агрегата.
Высокое качество работы, отличающееся небольшой шириной реза и отсутствием сильного перегрева всего изделия при его обработке плазмой. Сложная конструкция.
Отсутствие потребности в прогреве всего изделия, влияющего на его качество. Повышенный уровень шума при работе.
Безопасность процесса по причине отсутствия необходимости использовать газовые баллоны. Максимально допустимый угол отклонения от перпендикулярности реза составляет всего 100- 500 в зависимости от толщины изделия.

Для резки металлов используют несколько различных методов отличающихся друг от друга себестоимостью и эффективностью. Некоторые способы используются исключительно для промышленных целей другие также можно применять и в быту.


К последним относится плазменная резка металлов. Эффективность плазменного раскроя ограничивается опытом мастера и правильным выбором установки.

  • Что такое плазменная резка металла?
  • На чем основан принцип проведения работ?
  • Какие сферы применения имеет этот способ раскроя материалов?

Основы резки металлов плазмой

Чтобы понять основы резки металла с помощью плазменного метода следует для начала уяснить, что же такое плазма? От правильного понимания того как устроен плазматрон и принципов работы с ним зависит качество конечного результата.

Термическая плазменная обработка металлов зависит от параметров рабочей струи газа или жидкости, направленной под давлением на обрабатываемую поверхность. Для достижения необходимых результатов струю доводят до следующих характеристик:

  • Скорость - струя направляется под высоким давлением на поверхность материала. Можно сказать, что плазменный раскрой металла основан на разогревании металла до температуры плавления и быстрого выдувания его. Рабочая скорость струи при этом составляет от 1,5 до 4 км в сек.
  • Температура - для образования плазмы необходимо практически моментально разогреть воздух до 5000-30000°C. Высокая температура достигается благодаря созданию электрической дуги. При достижении необходимой температуры воздушный поток ионизируется и меняет свои свойства, приобретая электропроводность. Технология плазменной резки металла подразумевает использование систем нагнетания воздуха, а также осушителей, которые удаляют влагу.
  • Наличие электрической цепи. Все о раскрое металла плазмой можно узнать только на практике. Но некоторые особенности необходимо учитывать еще до приобретения установки. Так, существуют плазмотроны косвенного и прямого воздействия. И если для вторых обязательно, чтобы обрабатываемый материал пропускал электричество и был включен в общую электрическую сеть (выступая в роли электрода), то для первых такой необходимости нет. Плазма для резки металла в таком случае получается с помощью встроенного электрода внутри держателя. Этот способ используют для металлов и других материалов, которые не проводят электричество.

Еще один важный момент, который следует учитывать, это то, что плазменная резка толстого металла практически не выполняется, так как это ведет к увеличенным материальным затратам и малоэффективно.

Характеристики и принцип резки металла плазмой

Основной принцип работы плазменной резки металла можно описать следующим образом:

Так как процесс связан с моментальным разогревом разрезаемого материала до жидкого состояния, толщина металла при резке составляет:

  • алюминий до 120 мм;
  • медь 80 мм;
  • углеродистая и легированная сталь до 50 мм;
  • чугун до 90 мм.

Существуют два основных способа обработки материалов, от которых зависят характеристики плазменной резки. А именно:

  1. Плазменно-дуговая - способ подходит для всех видов металла, которые в состоянии проводить электрический ток. Обычно плазменно-дуговую резку используют для промышленного оборудования. Суть способа сводится к тому, что плазма образовывается за счет дуги, которая появляется непосредственно между поверхностью обрабатываемого материала и плазмотроном.
  2. Плазменно-струйная – в этом случае дуга возникает в самом плазмотроне. Плазменно-струйный вариант обработки более универсален, позволяет разрезать неметаллические материалы. Единственным недостатком является необходимость периодической замены электродов.

Плазменная резка металла работает как обычная дуговая, но без использования привычных электродов. Но эффективность способа обработки прямо пропорциональна толщине обрабатываемого материала.

Скорость и точность резки металла плазмой

Как и при любом другом виде термической обработки, при плазменной резке металла происходит определенное оплавление металла, что отражается на качестве реза. Существуют и другие особенности, которые являются характерными для этого метода. А именно:

От профессионализма мастера во многом зависит качество выполнения работ. Чистый и точный рез с минимальным отклонением от необходимых размеров может выполнить только работник с профильным образованием. Без соответствующей подготовки выполнить фигурную резку вряд ли получится.

Плазменная резка цветных металлов

При обработке цветных металлов используются разные способы резки в зависимости от типа материала, его плотности и других технических характеристик. Для разрезания цветных сплавов требуется соблюдения следующих рекомендаций.

Где применяется плазменный раскрой металла

Использование плазмотронов не зря пользуется такой большой популярностью. При относительно простой эксплуатации и незначительной стоимости ручной установки (по сравнению с другим оборудованием для резки) удается достичь высоких показателей относительно качества реза.

Применение плазменной резки металла получило распространение в следующих сферах производства:

Применение станков с плазменной резкой не заменило ручных установок. Так художественная резка металла плазмой позволяет сделать уникальные детали точно соответствующие замыслу художника, для использования их в качестве декоративных украшений для заборов и лестниц, а также перил, ограждений и т. д.

Резка металла плазмой – преимущества и недостатки

Без резки металла не может обойтись практически ни одно промышленное предприятие, так или иначе связанное с металлопрокатом. Быстрое разрезание листового материала на заготовки, декоративная фигурная резка металла плазмой, вырезание точных отверстий – все это можно выполнить достаточно быстро с помощью плазмотрона. Плюсы, которые имеет метод, заключаются в следующем:
  • Высокая производительность и скорость обработки деталей. По сравнению с обычным электродным методом можно выполнить объемы работ от 4 до 10 раз больше.
  • Экономичность - плазменный метод намного выигрывает на фоне стандартных способов обработки материалов. Единственные ограничения связанны с толщиной металла. Нецелесообразно и экономически невыгодно разрезать с помощью плазмы сталь толще 5 см.
  • Точность - деформации от тепловой обработки практически незаметны и не требуют дополнительной обработки впоследствии.
  • Безопасность.

Все эти преимущества плазменной резки металла объясняют, почему метод пользуется настолько широкой популярностью не только в промышленных, но и бытовых целях.

Но говоря о плюсах необходимо заметить и некоторые отрицательные стороны:

  • Ограничения, связанные с толщиной реза. Даже у мощных установок максимальная плотность обрабатываемой поверхности не может быть выше, чем 80-100 мм.
  • Жесткие требования относительно выполнения обработки деталей. От мастера требуется четко придерживаться угла наклона резака от 10 до 50 градусов. При несоблюдении этого требования нарушается качество реза, а также ускоряется износ комплектующих.

Сравнение плазменной и лазерной резки металла

Отличие лазерной резки металла от плазменной заключается в методах воздействия на поверхность материала.

Лазерные установки обеспечивают большую производительность и скорость обработки деталей, при этом после выполнения операции наблюдается меньший процент оплавленности. Минусом лазерного оборудования является его высокая стоимость, а также то, что толщина разрезаемого материала должна быть меньше 20 мм.

По сравнению с лазером плазмотрон имеет меньшую стоимость, более широкую сферу применения и функциональные возможности.