01.04.2019

Придет ли углепластик на массовую стройку. Углеволокно — материал будущего в строительстве


Композитные материалы давно не удивляют ни строителей, ни заказчиков. Все знают об их уникальных свойствах, способности намного лучше противостоять агрессивным внешним факторам, чем традиционные материалы. Вместе с тем жизнь не стоит на месте, и каждый год в этой сфере появляются новые разработки.

Об одной из них – углебетоне – стоит рассказать подробно. Об идее его создания, свойствах и перспективах внедрения в строительство.

Углеволокно – материал давно известный и очень востребованный в разных сферах промышленного производства. Но довольно дорогой.

Процесс получения графитовых нитей заключается в многоэтапном нагреве полиакрилонитрильных или вискозных волокон в разных средах до стадии обугливания. В результате чего и появляется материал, состоящий из чистого углерода.

Свойства углеволокна

Толщина углеродной нити всего 5-10 мкм, что тоньше человеческого волоса. Состоит она из выстроенных в кристаллическую решетку цепочек атомов углерода.

  • Для производства волокон, нити соединяются в жгуты, в которых их может быть до 50000.
  • Какие же свойства материала привлекли к нему внимание и позволили использовать при производстве конструкций, работающих в самых сложных условиях эксплуатации?
  • В первую очередь это уникальная прочность на разрыв. Она в четыре раза превышает такой же показатель для лучших марок стали.

Это интересно. Чтобы разорвать стержень из углепластика толщиной 5 мм, потребуется усилие в 2500 кг. Тогда как такой же стержень из чугуна разрушится при 150 кг.

При этом плотность углеволокна в четыре раза ниже, чем у той же стали. Соответственно и весит материал вчетверо меньше.

Где применяется углеволокно

Композитные материалы, в которых в качестве армирующего элемента используется углеволокно, применяются в машино- и самолетостроении, производстве спортивного инвентаря, строительстве.

Нас интересует именно строительство, поэтому остановимся на этой области применения:

  • Здесь углеродное волокно является основой для армирующих лент, полотен и даже композитной арматуры для бетонных конструкций.
  • Ленты и полотна из графитных нитей представляют собой текстильный материал особого плетения, пропитанный смолами;
  • Арматура – это стержни из углеродных волокон, пропитанных затвердевшим полимерным связующим.

Для справки. Чтобы обеспечить надежное сцепление с бетоном, на поверхность стержней наносится песчаное покрытие либо формируются выступающие ребра.

Углеволоконная арматура Армирующий каркас из композитных стержней Углеволоконная армирующая сетка Усиление перекрытий с использованием сетки

Углеткань обладает очень высокой прочностью, поэтому с её помощью усиливают новые конструкции, или возвращают утраченные характеристики старым.

Все это пока имеет мало общего с углебетоном. Но именно особые свойства углеродного волокна и натолкнули немецких ученых на мысль о создании нового материала.

Что такое углебетон

Итак, ученые из дрезденского Института монолитного строительства, решили заменить металлическую арматуру в бетоне углеродистым волокном. Вернее, текстильным материалом, полученным из него путем переплетения с получением особой решетчатой структуры.

В результате они получили материал, буквально по всем параметрам превосходящий все известные сегодня виды бетонов. С намного большей прочностью, и меньшей удельной массой.

Внешне материал мало отличается от традиционного бетона Структура углебетона Строительный блок из углебетона

Несмотря на кажущуюся простоту изобретения, ученые-химики работали над ним несколько десятилетий, добиваясь, чтобы углеволоконный текстиль надежно сцеплялся с бетонной смесью. Для этого его обрабатывают специальным покрытием, состав которого пока держится в тайне изготовителем.

Технологии изготовления изделий из углебетона

На данный момент разработано два способа производства углебетонных изделий:

  1. Набор слоев. Технология заключается в послойной укладке текстильного полотна на бетон с последующей заливкой. То есть, на слой смеси укладывается текстиль, заливается тонким слоем бетона, и так поочередно до получения требуемой толщины.
  2. Заливка в опалубку. Традиционный способ, при котором в опалубке или форме сначала фиксируется углеволоконная арматура, затем заливается бетонная смесь.

Преимущества материала

При сравнении с железобетоном, углебетон выдает следующие преимущества:

  • Он намного легче, что облегчает и ускоряет строительство;
  • Углебетон прочнее в несколько раз;
  • Он не трескается, а находящаяся внутри арматура не ржавеет, в то время как железобетон со временем начинает разрушаться именно по этой причине.

  • Как следствие двух последних пунктов, углебетон гораздо долговечнее и надежнее аналогов с металлическим армированием.

Единственный минус материала – это его высокая стоимость. Однако если учесть, что конструкции из него получаются исключительно прочными, не требующими в течение многих лет ремонта и реконструкции, то этот минус компенсируется долговечностью эксплуатации.

Возможные сферы применения

К настоящему времени, разработчики уже нашли применение для этого уникального материала. В частности, они использовали его для реконструкции старых зданий исторической ценности в двух городах Германии. Без их помощи эти здания пришлось бы снести.

В будущем же планируется использовать углебетон в новом строительстве. Уже проведен эксперимент по возведению четырехметрового павильона из сложных элементов толщиной 4 сантиметра. Из железобетона такое здание построить невозможно, да и нужной прочностью оно отличаться не будет.

Ученые даже сегодня получают запросы из разных стран мира, в которых множество железобетонных строений нуждаются в срочной реконструкции. Они в свою очередь надеются, что уже через десять лет соотношение углебетона и железобетона, используемого в строительстве, составит 1:4.

Углеродное волокно - современный материал, который состоит из тончайших нитей диаметром 5-15 микрометров, образованных в основном атомами углерода. Атомы объединены в мельчайшие кристаллы, расположенные параллельно друг другу. Благодаря такому выравниванию кристаллов углеволокно обладает значительной прочностью на растяжение.

Впервые получение и применение углеродных волокон (УВ) (точнее, нитей) было предложено и запатентовано известным американским изобретателем - Томасом Эдисоном - в 1880 г. в качестве нитей накаливания в электрических лампах. Эти волокна получались в результате пиролиза хлопкового или вискозного волокна и отличались хрупкостью и высокой пористостью и впоследствии были заменены вольфрамовыми нитями. В течение последующих 20 лет он же предложил получать углеродные и графитированные волокна на основе различных природных волокон.

Вторично интерес к углеродным волокнам появился в середине XX в., когда велись поиски материалов, пригодных для использования в качестве компонентов композитов для изготовления ракетных двигателей. УВ по своим качествам оказались одними из наиболее подходящих для такой роли армирующими материалами, поскольку они обладают высокой термостойкостью, хорошими теплоизоляционными свойствами, коррозионной стойкостью к воздействию газовых и жидких сред, высокими удельными прочностью и жёсткостью.

__________________________________________________________________

Получение

Углеродное волокно обычно получают термической обработкой химических или природных органических волокон, при которой в материале волокна остаются главным образом атомы углерода. Температурная обработка состоит из нескольких этапов. Первый из них представляет собой окисление исходного волокна на воздухе при температуре 250 °C в течение 24 часов. После окисления следует стадия карбонизации - нагрева волокна в среде азота или аргона при температурах от 800 до 1500 °C. В результате карбонизации происходит образование графитоподобных структур. Процесс термической обработки заканчивается графитизацией при температуре 1600-3000 °C, которая также проходит в инертной среде. В результате графитизации количество углерода в волокне доводится до 99 %.

_____________

Углеволокно в строительстве

В строительстве углеволокно применяется для наружного армирования и для усиления конструкций - в качестве армирующего наполнителя, обладающего значительной устойчивостью к деформациям, а также к трещинам при резких перепадах температур.

Для усиления конструкций применяют также металл и бетон, но углеволокно обладает рядом преимуществ перед ними. Главное из них - высокая прочность на растяжение. Другие плюсы - существенное уменьшение веса усиливаемой конструкции и обеспечение ее коррозионной стойкости.

______________________________________

Углеволокно можно использовать для усиления конструкций из бетона, стали и древесины. Усиленный элемент приобретает дополнительно до 120 % прочности на сжатие и до 65 % прочности на изгиб.

Усиление колонн и перекрытий, упрочнение мостов - варианты применения композитов на основе углеволокна в строительстве, кажется, неисчерпаемы.

Для повышения прочности стен зданий в сейсмоопасных зонах можно применять внешнее армирование кирпичной кладки углеволокнистой тканью.

Вторая основная область применения карбона в строительстве - реставрация несущих каменных элементов. Оклеечным армированием восстанавливают опоры и балки бетонных мостов. Это наиболее ответственные государственные объекты и их надёжность доверяют углеволокну. В частном строительстве нагрузки в десятки раз ниже, а значит, усиление фундамента или углов стен будет с огромным запасом прочности. Это прекрасная альтернатива традиционным способам - подливка фундамента бетоном или установка подобных стен.

Ещё одно полезное свойство композитного материала - его нетоксичность и безвредность после полимеризации. В готовом виде он имеет глянцевую поверхность и не вступает в реакцию с водой.


Достоинства материала

Многие знают о коррозии сборного железобетона, которую вызывает стальная арматура. При использовании сетки из углеродного волокна вместо стальной арматуры результаты получаются превосходными.

1. Бетонные стеновые панели можно делать намного тоньше.

2. Вес панелей становиться намного легче (до 75%).

3. Не требуется дополнительная теплоизоляция потому, что углеволокно не проводит тепло или холод.

4. Обладает высокой огнестойкостью.

5. Этот новый материал уже используется для производства стеновых сендвич панелей.

Недостатки

Углеродное волокно также имеет недостатки, которые должны быть приняты во внимание при планировании его использования.

1. Этот материал довольно дорогой по сравнению с аналогами.

2. Материал имеет способность отражать электрические волны, что может быть недостатком в некоторых случаях.

3. Процесс изготовления композитов более трудоемкий, чем изготовление металла.

Стержни, изготовленные из стеклянных, базальтовых или углеродных волокон и прошедшие специальную обработку, относятся к неметаллической арматуре. Существует несколько ее разновидностей. Классификация проводится на основании использованного волокна:

§ Стеклопластиковая.

§ Базальтопластиковая.

§ Углепластиковая арматура.

Композитные материалы представляют собой конструкцию из армирующего элемента и матрицы. Армирующей основой обычно служат волокна, имеющие непрерывную структуру. Матричный компонент всегда представлен каким-нибудь полимером, формирующим стержень. Наружной поверхности композитной арматуры придаётся ребристый рельеф.

Технология изготовления называется пултрузия или протяжка.

Суть метода состоит в том, что волокно пропитывается полимером и протягивается через разогретую формообразующую конструкцию.

  • Вначале, волокно графита подается в полимерную ванну, в которой оно пропитывается специальным полимером.
  • Из ванны волокно попадает в преформочное устройство.
  • Оттуда, волокна карбона направляются в нагретую фильеру. Проходя через пресс-форму, в которой специальными нагревательными элементами создается до 6 зон с различной температурой, полимер затвердевает, и на выходе из нее получается охлажденный готовый продукт.

Внешний вид полностью повторяет классическую форму арматуры из металла: прутья и стержни диаметром сечения до 20 мм.

Поверхность у такой арматуры ребристая, что обеспечивает максимальное сцепление с бетонным раствором.

При внешней схожести химический состав неметаллической композитной арматуры совершенно другой. Она изготовлена из волокон карбона, связанных в единый пучок полимером. Прерывистость структуры углеродного наполнителя определяет свойства и характеристики материала, выгодно отличает его среди подобных изделий.

Углепластиковая арматура имеет широкий спектр применения. Она используется при возведении жилых домов и зданий общественного назначения, а также промышленных объектов и складских помещений.

Разрушение бетонных конструкций из-за коррозии стальной арматуры - одна из основных задач, с которой столкнулась строительная отрасль.

Главным преимуществом перед другими материалами, которое и определяет применение углепластиковой арматуры в строительстве, является её коррозийная стойкость по отношению к разным условиям внешней среды. При этом не имеет значения, является ли агрессивная среда фактором эксплуатации будущего объекта или возникает в процессе возведения.

Нержавеющая композитная арматура имеет ряд преимуществ перед обычной металлической арматурой.

Достоинства углепластиковой арматуры:

· Углепластиковая арматура имеет в 3 раза большую прочность на разрыв, нежели стальная. В связи с этим проводится равнопрочная замена арматуры, при которой стальная арматура заменяется на композитную с уменьшением сечения. Это позволяет снизить вес, и стоимость арматуры, и сохранить физико-механические характеристики.

· Композитная арматура не подвержена коррозии и устойчива к воздействию агрессивных сред, в том числе, к щелочной среде бетона.

· Композитная арматура в 9 раз легче стальной при равнопрочной замене. Это позволяет экономить на транспортировке и уменьшает вес конструкции.

· Не теряет прочность под воздействием низких температур. Диапазон эксплуатационных температур от -70 °С до +100 °С.

· Композитная арматура обладает низкой теплопроводностью. Показатель теплопроводности в 100 раз ниже, чем у металлической.

· Являясь диэлектриком, композитная арматура радиопрозрачна и магнитоинертна. Не пропускает электрический ток. Предотвращает короткие замыкания электропроводки внутри бетона. Углепластик не создает помех и искажений для радиоволн.

· Высокая долговечность. Как утверждают все производители композитной арматуры, ее минимальный срок эксплуатации около 75 лет.

· Композитная арматура позволят экономить до 50% при её применении вместо стальной. Помимо того, что арматура стоит на 30-40% дешевле, существенная экономия достигается за счёт улучшения логистики поставок.

Недостатки:

Положительных моментов у данной арматуры много, тем не менее, есть и минусы.

Первым следует назвать невысокий модуль упругости. По этому показателю арматура в 4 раза проигрывает металлической. Свойство проявляется в том, что материал не гнется, а ломается. По этой причине, ее применяют при строительстве фундамента, дороги, мостов, но использование в перекрытиях влечет за собой потенциальный риск и необходимость дополнительных расчетов.

Нужно сказать и о воздействии высокой температуры. При нагреве до 600 град. С, арматура из углепластика начинает быстро размягчаться. Поэтому при строительстве нужно предпринять дополнительные меры по теплоизоляции, в случае пожара.

Еще одним недостатком считается тот факт, что соединяют композитную арматуру только вязкой, электросварка применяться не может. На крупных стройплощадках часто надевают стальные наконечники на прутья и только после этого производят сварку.

Вязка арматуры

Вязать арматуру из композитных материалов достаточно просто, если использовать специальные хомуты и клипсы.

По технологии укладки, композитная арматура аналогична традиционным стальным материалам.

Области применения композитной арматуры:

· в фундаментах ниже нулевой отметки залегания;

· в качестве гибких связей для трёхслойных стен;

· для дорожного строительства;

· в конструкциях, работающих в условиях ускоренной коррозии стальной арматуры и бетона (причалы, сухие доки, берегоукрепление).

Рынок композитной арматуры стремительно растёт. По оценкам специалистов его рост составляет 12% в год.

Здесь представлена сравнительная характеристика стоимости композитной и стальной арматуры при равнопрочной замене.


Похожая информация.


Стало почти аксиомой, что сезон строительства индивидуальных жилых домов начинается ранней весной и заканчивается поздней осенью. В среднем производственный цикл возведения фундамента и коробки кирпичного дома составляет от двух до пяти месяцев. В России существуют районы, где период плюсовой температуры едва укладывается в три месяца. Возникает вопрос: как там ведут каменные работы? К счастью, в строительной индустрии существуют системы зимнего обогрева растворов и смесей, различные химические добавки к ним, значительно понижающие барьер замерзания.

Зимой строительство не прекращают и в Центральной части России, где температура воздуха иногда опускается до –35 С.

Самая серьезная проблема зимней кладки заключается в сложности технологического процесса. Любое отклонение от правил может привести к разрушению готовых конструкций. Вода в растворе при замерзании увеличивается в объеме примерно на 6–10%. Лед в кладке тает неравномерно, вследствие чего кладка дает разную усадку, отклонение от вертикали, образование трещин. При несоблюдении технологии работ прочность зимней кладки составляет всего 40%.

Усиление конструкции углеволокном

Углеволокно выполняет огромную роль при проведении строительных работ в зимнее время. Процедура значительно увеличивает прочность и сейсмостойкость конструкций, что особенно важно там, где грунт является слабым, что может привести к деформации фундамента строения.

Углеволокно – прочный и легкий, по сравнению с арматурой, материал. Оно выдерживает большую нагрузку, до 70 тонн на квадратный мм и способно противостоять любой непогоде. В случае повреждения (углеволокно легко режется) материал не расползается дальше.

Различают два основных типа усиления конструкции углеволокном:

— поперечное (кроме углеводородных волокон используется металлическая сетка или специальные стержни из металла);
— продольное (бывает внешним или внутренним).

По функциональному назначению выделяют три углеволокна:

— рабочий (воспринимает любые усилия, появляющиеся под действием нагрузок)
— распределительный (сохраняет цельность конструкции, придает прочность каркасу)
— монтажный (создает транспортабельный каркас).

Если весной вы обнаружили, что дом дал трещину, чтобы предотвратить дальнейшее растрескивание постройки, его можно усилить углеволокном. Разрушенные перемычки очищаются, обеспыливаются, по необходимости трещины шпаклюются. Замешивается эпоксидный клей, отрезается ткань из углеродных волокон нужного размера. Эпоксидный состав наносится на поверхность. Ткань аккуратно наклеивается. Специальным валиком пропитываем ткань клеем. Завершающий этап – нанесение шпаклевочного состава из клея.

О составе пленки

Материал имеет многослойную структуру. Состоит, как правило, из трех слоев, а те, в свою очередь из тонких нитей диаметром от 5 до 15 мкм. Два внешних слоя – светостабилизированная пленка угольного или черного цвета. Внутренний – армирующая сетка из углеродного волокна с размером ячеек от 0,2 мм до 2 см. Она придает материалу устойчивость к нагрузкам и растяжениям.

За счет стабилизаторов полимерный материал не разрушается под действием солнечных лучей и может прослужить до 50 лет. Пленка обладает теплостойкостью, морозостойкостью и может сохранять эксплуатационные свойства при температурах от + 80 до – 40 °С.

Выгоды

Теперь о деньгах. Есть, допустим, мост. Длина постройки – 15 метров, год постройки – 50. Разваливается. Есть два варианта: усилить металлическим профилем или углеродной тканью. Смета одного ремонта с помощью углеродной ткани будет меньше на 40%. Тут не нужно сложной техники, особых специалистов, углеродная ткань клеится как обои.

Композиты CFRP (Carbon Fiber Reinforced Polymer) — современные облегчённые и прочные материалы. Этот вид композитов удачно применим для производства различных продуктов, используемых в повседневной жизни. Полимерный композит карбона – это структура, армированная волокнами углерода, выступающего в качестве главного компонента. Следует отметить: символ «Р» аббревиатуры CFRP допускает также расшифровку «пластик», а не только «полимер».

Композиты CFRP, как правило, создаются с применением термореактивных смол:

  • полиэфирная смола,
  • виниловый эфир.

Несмотря на тот факт, что термопластичные смолы используются в составе композитов CFRP, часто можно встретить несколько иную аббревиатуру, определяющую композит как CFRTP (Carbon Fiber Reinforced Thermoplastic Composites). В принципе, разница несущественная.

Тем не менее, при работе с композитами важно понимать все относимые к ним термины и аббревиатуры. Не менее важно понимать свойства композитов CFRP и все возможности участвующего в них силового компонента, коим является карбон.

Данная статья описывает основные аспекты метода усиления конструкций углеволокном , а если точнее – технологию внешнего армирования строительных конструкций композитными материалами на основе углеродных волокон. Данный материал служит для ознакомления с основами данной технологии, вариабельностью применяемых материалов, но не может использоваться в качестве технологического, или проектного руководства в виду своей поверхностности и обобщенности.

Усиление конструкций углеволокном – относительно новый для России метод – первые реализованные в нашей стране объекты датированы 1998 годом. Заключается этот метод в наклеивании на поверхность конструкции высокопрочного углеволокна, воспринимающего на себя часть усилий, тем самым повышая несущую способность усиленного элемента. В качестве клея применяются специальные конструкционные адгезивы (связующее) на основе эпоксидных смол, либо минерального вяжущего. Благодаря высоким физико-механическим характеристикам углеволокна, повысить несущую способность конструкции можно практически без потери полезного объема помещений и увеличения собственного веса здания – толщина усиливающих элементов обычно составляет от 1 до 5 мм.

Следует понимать, что «углеволокно » - это материал (например, как бетон), а не конечное изделие. Из углеволокна изготавливают целый набор материалов, некоторые из которых применяются в строительстве – углеродные ленты, ламели и сетки .

В подавляющем большинстве случаев усиление углеволокном применяется для железобетонных конструкций – это обусловлено высокими технико-экономическими показателями реализации таких проектов. Однако, данная технология применима и к металлическим, деревянным и каменным зданиям и сооружениям.

Конструктивные решения.

При проектировании усиления конструкций углеволокном необходимо руководствоваться Сводом правил СП 164.1325800.2014 "Усиление железобетонных конструкций композитными материалами. Правила проектирования."

Усиление плит перекрытий и балок выполняется путем наклейки углеволокна в наиболее напряженных зонах – обычно в центре пролета по нижней грани конструкции. Это повышает их несущую способность по изгибающим моментам. Для решения таких задач подходят все виды углеродных материалов – ленты, ламели и сетки.





Кроме того, для балок часто требуется выполнить усиление приопорных зон на повышение несущей способности при действии поперечных сил (по наклонной трещине). Для этого выполняется наклейка U-образных хомутов из углеродных лент, или сеток.


Углеродные ленты и ламели иногда применяются в совокупности , так как их способ монтажа и адгезивные составы схожи. Применение углеродных сеток, как правило, исключает использование лент и ламелей в связи с производством «мокрых» видов работ.


Усиление колонн происходит путем их оклейки углеродными лентами, или сетками в поперечном направлении. Таким образом достигается эффект «бондажирования» и происходит сдерживание поперечных деформаций бетона по схожему принципу с «бетоном в трубе», или «трехосным сжатием».


Выполнение работ. Подготовка поверхности.

При усилении железобетонных конструкций углеволокном выполнение работ начинается с разметки конструкции – отчерчиваются зоны в которых будут располагаться элементы усиления. Затем эти зоны очищаются от отделочных материалов, загрязнений и цементного молочка до обнажения крупного заполнителя бетона. Для этого применяют, либо угол-шлифовальные машинки с алмазными чашками, либо водо-пескоструйные установки.


Качество подготовленного основания (поверхности на которую приклеивают углеволокно) напрямую влияет на совместность работы конструкции с элементом усиления, поэтому при подготовке основания, в обязательном порядке, контролируют следующие параметры:

  • ровность поверхности;
  • прочность и целостность материала усиливаемой конструкции;
  • температуру поверхности конструкции;
  • отсутствие загрязнений и пыли;
  • влажность;
  • и другие (полный перечень и допустимые значения контролируемых параметров приводятся в технологических картах на выполнение строительных работ).

Приготовление компонентов.

Углеродные материалы поставляются смотанными и упакованными в полиэтилен. Очень важно не испачкать их в пыли, которой после шлифования бетона будет очень много, иначе углеродное волокно невозможно будет пропитать связующим , т.е. получится производственный брак. Поэтому, заготовительную зону следует застелить плотным полиэтиленом и уже по нему отматывать требуемую длину углеродного материала. Обрезка углеродных лент и сеток может осуществляться канцелярским ножом, или ножницами по металлу, а углеродных ламелей – угол-шлифовальной машинкой с отрезным кругом по металлу.

Адгезивы, как правило, применяются двухкомпонентные – т.е. требуется смешивать два материала в определенной пропорции. Необходимо четко следовать инструкции производителя и при дозировании использовать весы, или мерную посуду . Смешивание составов происходит путем постепенного добавления одного компонента в другой при постоянном перемешивании низко оборотистой дрелью. Ошибки дозирования, или неправильное вмешивание одного компонента в другой, могут привести к закипанию адгезива .

В последние годы, большинство производителей поставляют адгезив в комплектах – т.е. в двух ведрах с уже дозированными объемами компонентов. Таким образом можно просто вмешать содержимое одного ведра в другое (ведро специально поставляется большего объема (полупустым)) и получить готовый адгезивный состав.

Полимерцементные адгезивы (для углеродных сеток) поставляются в мешках и затворяются водой согласно инструкции, как любой ремонтный материал.

Следует помнить, что адгезив имеет ограниченный срок жизни – порядка 30-40 минут и он резко сокращается при повышении температуры выше 20°С, поэтому объем приготовляемого адгезива не должен превышать физических возможностей его выработки.

Монтаж углеволоконных материалов.

В зависимости от вида углеволоконного материала технология его монтажа существенно отличается:

Монтаж углеродных лент может осуществляться по «мокрому», или «сухому» методу. В обоих случаях на основание наносится слой адгезива, но при «мокром» методе углеродная лента сначала пропитывается адгезивом, а потом прикатывается валиком к основанию, а при «сухом» - лента прикатывается к основанию, а потом сверху ее пропитывают слоем адгезива. Пропитка углеродной ленты осуществляется путем нанесения на ее поверхность слоя адгезива и вдавливания его малярным валиком, или шпателем, добиваясь того, что бы верхний слой связующего проник вглубь углеволокна, а нижний слой связующего вышел наружу. Углеродные ленты могут укладываться в несколько слоев, но при наклейке на потолочную поверхность, не рекомендуется за одну смену выполнять более 2-х слоев – материал начинает «сползать» под собственным весом.


Следует помнить, что после полимеризации адгезива, его поверхность будет гладкой и качественно нанести на нее отделку будет невозможно. Поэтому, еще по «свежему» элементу усиления необходимо нанести слой крупного песка.

При монтаже углеродных ламелей адгезив наносится и на конструкцию, и на усиливающий элемент. После этого, ламель прикатывается к основанию малярным валиком, или шпателем.





Монтаж углеродной сетки выполняется на увлажненную поверхность бетона. Сначала наносится первый слой полимерцементного состава. Он может наноситься как ручным, так и механизированным способом – торкретом . По «свежему» слою полимерцемента раскатывается углеродная сетка с небольшим вдавливанием в состав. Удобнее всего это делать шпателем. Затем необходимо выдержать технологическую паузу до начала схватывания состава. Срок схватывания зависит от выбранного состава и температуры окружающей среды, но требуемое состояние – полимерцемент с трудом продавливается пальцем. После этого наносится закрывающий слой полимерцемента.


Защитные покрытия.

Необходимо помнить, что адгезивы на основе эпоксидных смол горючи , а кроме того – подвержены охрупчиванию при воздействии ультрафиолетовых лучей. Поэтому, применяя их необходимо предусматривать огнезащиту элементов усиления на класс огнестойкости не ниже заявленного для усиливаемой конструкции.


Если Вам нужно выполнить Усиление конструкций углеволокном - позвоните нам и мы проконсультируем Вас и поможем составить план решения Вашей задачи.