20.09.2019

Для определения световой волны с помощью. Определение длины световой волны с помощью


Цель работы : ознакомление методами получения когерентных источников света и определение длины световой волны интерференционными методами Юнга и бипризмы Френеля.

Приборы и принадлежности : : оптическая скамья с фонарем, окуляр -микрометр, столик для установки пластины с двойной щелью, собирающая линза, набор стеклянных светофильтров, бипризма Френеля..

Упражнение 1.

Метод Юнга .

Из точки S (рис.13) распространяется монохроматическая сферическая световая волна, которая падает на два очень малых и близко расположенных друг от друга щели и в пластине . По принципу Гюйгенса эти два отверстия являются самостоятельными источниками световых колебаний; из этих источников будут выходить когерентные волны.

За пластинкой происходит интерференция налагающихся когерентных волн, источником которых является щели и .

При известных расстояниях от когерентных источников и до экрана Э 2 и –между источниками по формуле (2.6) можно определить длину световой волны , измерив ширину интерференционные полосы .

Порядок выполнения работы

1. Устанавливают пластинку с двойной щелью на расстоянии от источника света, включают его. Перемещая пластину с двойной щелью перпендикулярно оптической скамье, для получения интерференционных полос в окуляре. Двигая пластинку с двойной щелью, добиваются того, чтобы полосы интерференции были яркими и четкими.



2. Измеряют расстояние между темными . Для обеспечения большей точности определения необходимо измерить расстояние между удаленными, но хорошо видимыми полосами и разделить его на число светлых между ними полос .

4. Повторить опыт несколько раз с разными светофильтрами

5. Результаты записать в таблицу вычислить погрешность.

6. Сравнить результаты с табличными значениями сделать вывод.

Упражнение 2.

Метод бипризмы Френеля



Бипризма представляет собой две одинаковые призмы с малыми преломляющими углами, сложенными своими основаниями. Пучок света, падающий на бипризму от щелевой диафрагмы источника S (рис. 14), вследствие преломления в бипризме, разделяется на два перекрывающихся пучка, как бы исходящими от двух мнимых источников S 1 и S 2. За бипризмой, во всей области наложения пучков света, будет наблюдаться интерференционная картина в виде чередующихся параллельных светлых и темных полос. В случае белого света полосы будут радужными.

Для определения длины световой волны воспользуемся формулой (2.6).

Пользуясь этой формулой, можно экспериментально определить длину волны монохроматического света. В данной работе ∆x отсчитывают по шкале окуляр -микрометра (см. выше). Расстояние t между мнимыми источниками S 1 и S 2 измеряется косвенным методом, используя собирающую линзу (рис. 15).

Лабораторная работа №6

Определение длины световой волны

Цель работы : определить длину световой волны с помощью дифракционной решетки.

Оборудование:

    дифракционная решетка с указанным на ней периодом;

    измерительная установка;

    полупроводниковый лазер (лазерная указка).

Ход работы

В работе для определения длины световой волны используется дифракционная решетка с периодом (период указан на решетке). Она является основной частью измерительной установки, показанной на рисунке 1.

Перед началом лабораторной работы установите на скамью экран так, чтобы при включении лазера кнопкой красная точка совпала с нулевым делением шкалы экрана.

Установите в держатель рамку с дифракционной решеткой и включите лазер. На экране образуется картина максимумов и минимумов, идущих от разных щелей решетки в одном направлении. Эта картина представляет серию ярких красных точек, симметрично расходящихся от центрального пятна – нулевого максимума. Меняя дифракционные решетки, наблюдайте, как меняется дифракционная картина в зависимости от числа штрихов на миллиметр.

к ) точно совпадал с целым миллиметровым делением шкалы экрана, и измерьте расстояние b от него до центрального максимума. Определите расстояние а по линейке на скамье от экрана до решетки.

Длина волны определяется по формуле:
,

Где: d - период решетки; к - порядок спектра;

- угол, под которым наблюдаются максимум света соответствующего цвета;

Поскольку углы, под которыми наблюдается максимумы 1-го и 2-го порядков, не превышают 5 0 , можно вместо синусов углов использовать их тангенсы.

Из рисунка 2 видно, что
.

Расстояние отсчитывают по линейке от решетки до экрана, расстояние b – по шкале экрана от щели до выбранной линии спектра.

О

кончательная формула дня определения длины волны имеет вид:


Указания к работе

    Подготовьте бланк отчета с таблицей для записей результатов измерений и вычислений.

    Соберите измерительную установку, установите экран на произвольном расстоянии от решетки.

    После наблюдения качественной картины серии максимумов переместите движок с решеткой по пазу скамьи так, чтобы какой либо максимум (запишите его номер к ) точно совпадал с целым миллиметровым делением шкалы экрана, и измерьте расстояние b от него до центрального максимума.

    Определите положение середин цветных полос в спектрах 1-го порядков.

    Данные занесите в таблицу.

Цвет полос

b слева, м

b среднее,

    По данным измерений вычислите длины волн

    Сравните полученные результаты с табличным значением длины волны видимой части спектра.

    Проведите опыт с другой дифракционной решеткой и сравните полученные результаты между собой и табличными.

Во избежание повреждения глаз категорически запрещается направлять луч лазера на лицо человека..

Контрольный вопрос:

Чем отличается дифракционный спектр от дисперсионного.

Определение длины световой волны при помощи дифракционной решётки

Цель работы : определение с помощью дифракционной решётки длины световых волн в различных частях видимого спектра.

Приборы и принадлежности : дифракционная решётка; плоская шкала со щелью и лампа накаливания с матовым экраном, укреплённые на оптической скамье; миллиметровая линейка.

1. ТЕОРИЯ МЕТОДА

Дифракцией волн называется огибание волнами препятствий. Под препятствиями понимаются различные неоднородности, которые волны, в частности, световые, могут огибать, отклоняясь от прямолинейного распространения и заходя в область геометрической тени. Дифракция наблюдается также, когда волны проходят через отверстия, огибая их края. Дифракция заметно выражена, если размеры препятствий или отверстий порядка длины волны, а также на больших расстояниях от них по сравнению с их размерами.

Дифракция света находит практическое применение в дифракционных решётках. Дифракционной решёткой называют всякую периодическую структуру, влияющую на распространение волн той или иной природы. Простейшая оптическая дифракционная решётка представляет собой ряд одинаковых параллельных очень узких щелей, разделённых одинаковыми непрозрачными полосами. Кроме таких прозрачных решёток существуют также отражательные дифракционные решётки, в которых свет отражается от параллельных неровностей. Прозрачные дифракционные решётки обычно представляют собой стеклянную пластинку, на которой алмазом с помощью специальной делительной машины прочерчены полосы (штрихи). Эти штрихи являются почти полностью непрозрачными промежутками между неповреждёнными частями стеклянной пластинки – щелями. Число штрихов, приходящихся на единицу длины, указывается на решётке. Периодом (постоянной) решётки d называется суммарная ширина одного непрозрачного штриха плюс ширина одной прозрачной щели, как показано на рис. 1, где подразумевается, что штрихи и полосы расположены перпендикулярно плоскости рисунка.

Пусть на решётку (ДР) перпендикулярно её плоскости падает параллельный пучок света, рис. 1. Поскольку щели являются очень узкими, то будет сильно выражено явление дифракции, и световые волны от каждой щели пойдут по различным направлениям. В дальнейшем прямолинейно распространяющиеся волны будем отождествлять с понятием лучей. Из всей совокупности лучей, распространяющихся от каждой щели, выделим пучок параллельных лучей, идущих под некоторым углом  (угол дифракции) к нормали, проведённой к плоскости решётки. Из этих лучей рассмотрим два луча, 1 и 2, которые идут от двух соответствующих точек A и C соседних щелей, как показано на рис. 1. Проведём к этим лучам общий перпендикуляр AB . В точках A и C фазы колебаний одинаковы, но на отрезке C B между лучами возникает разность хода , равная

 = d sin. (1)

После прямой AB разность хода  между лучами 1 и 2 сохраняется неизменной. Как видно из рис. 1, такая же разность хода будет существовать между лучами, идущими под тем же углом  от соответствующих точек всех соседних щелей.

Рис. 1. Прохождение света через дифракционную решетку ДР: Л – собирающая линза, Э – экран для наблюдения дифракционной картины, M – точка сведения параллельных лучей

Если теперь все эти лучи, т. е. волны, свести в одну точку, то они будут либо усиливать, либо ослаблять друг друга вследствие явления интерференции. Максимальное усиление, когда амплитуды волн складываются, происходит в том случае, если разность хода между ними равна целому числу длин волн:  = k , где k – целое число или ноль,  – длина волны. Следовательно, в направлениях, удовлетворяющих условию

d sin = k , (2)

будут наблюдаться максимумы интенсивности света с длиной волны .

Для сведения лучей, идущих под одним и тем же углом , в одну точку (M ) используется собирающая линза Л, обладающая свойством собирать параллельный пучок лучей в одной из точек своей фокальной плоскости, куда помещается экран Э. Фокальная плоскость проходит через фокус линзы и параллельна плоскости линзы; расстояние f между этими плоскостями равно фокусному расстоянию линзы, рис 1. Важно, что линза не изменяет разность хода лучей , и формула (2) остаётся справедливой. Роль линзы в настоящей лабораторной работе играет хрусталик глаза наблюдателя.

В направлениях, для которых величина угла дифракции  не удовлетворяет соотношению (2), будет происходить частичное или полное ослабление света. В частности, световые волны, приходящие в точку встречи в противоположных фазах, будут полностью гасить друг друга, и в соответствующих точках экрана будут наблюдаться минимумы освещённости. Кроме того, каждая щель из-за дифракции посылает в разных направлениях лучи разной интенсивности. В результате картина, возникающая на экране, будет иметь довольно сложный вид: между главными максимумами, определяемыми условием (2), располагаются добавочные, или побочные максимумы, разделённые совсем тёмными участками – дифракционными минимумами. Однако практически на экране будут видны лишь главные максимумы, так как интенсивность света в побочных максимумах, не говоря уже о минимумах, очень мала.

Если падающий на решётку свет содержит волны различных длин  1 ,  2 ,  3 , ..., то по формуле (2) можно подсчитать для каждой комбинации k и  свои значения угла дифракции , для которых будут наблюдаться главные максимумы интенсивности света.

При k = 0 для любого значения  получается  = 0, т. е. в направлении, строго перпендикулярном плоскости решётки, усиливаются волны всех длин. Это так называемый спектр нулевого порядка. Вообще, число k может принимать значения k = 0, 1, 2 и т. д. Два знака, , для всех значений k  0 соответствуют двум системам дифракционных спектров, расположенных симметрично по отношению к спектру нулевого порядка, слева и справа от него. При k = 1 спектр носит название спектра первого порядка, при k = 2 получается спектр второго порядка и т. д.

Поскольку всегда |sin|  1, то из соотношения (2) следует, что при заданных d и  значение k не может быть произвольно большим. Максимально возможное k , т. е. предельное число спектров k max , для конкретной дифракционной решётки можно получить из условия, которое следует из (2) при учете того, что |sin|  1:

Поэтому k max равно максимальному целому числу, не превосходящему отношения d /. Как было указано выше, каждая щель посылает в разных направлениях лучи разной интенсивности, причем оказывается, что при больших значениях угла дифракции  интенсивность посылаемых лучей слаба. Поэтому спектры с большими значениями |k |, которые должны наблюдаться под большими углами , практически видны не будут.

Картина, возникающая на экране в случае монохроматического света, т. е. света, характеризуемого одной определённой длиной волны , показана на рис. 2а. На тёмном фоне можно видеть систему отдельных ярких линий одного цвета, из которых каждая соответствует своему значению k .

Рис. 2. Вид картины, получаемой с помощью дифракционной решетки: а) случай монохроматического света, б) случай белого света

Если же на решётку падает немонохроматический свет, содержащий набор волн различных длин (например, белый свет), то при данном k  0 волны с различными длинами  будут усиливаться под разными углами , и свет будет разложен в спектр, когда каждому значению k соответствует весь набор спектральных линий, рис. 2б. Способность дифракционной решётки разлагать свет в спектр используют на практики для получения и исследования спектров.

Основными характеристиками дифракционной решётки являются её разрешающая способность R и дисперсия D . Если в световом пучке присутствуют две волны с близкими длинами  1 и  2 , то возникнут два близко расположенных дифракционных максимума. При малой разности длин волн  =  1   2 эти максимумы сольются в один и не будут видны раздельно. Согласно условию Рэлея, две монохроматические спектральные линии видны ещё раздельно в том случае, когда максимум для линии с длиной волны  1 попадает на место ближайшего минимума для линии с длиной волны  2 и наоборот, как показано на рис. 3.

Рис. 3. Схема, поясняющая условие Рэлея: I – интенсивность света в относительных единицах

Обычно для характеристики дифракционной решётки (и других спектральных приборов) используют не минимальное значение , когда линии видны раздельно, а безразмерную величину

называемую разрешающей способностью. В случае дифракционной решётки, используя условие Рэлея, можно доказать формулу

R = kN , (5)

где N полное число штрихов решётки, которое можно найти, зная ширину решётки L и период d :

Угловая дисперсия D определяется угловым расстоянием  между двумя спектральными линиями, отнесённым к разности их длин волн :

Она показывает быстроту изменения угла дифракции  лучей в зависимости от изменения длины волны .

Отношение /, входящее в (7), можно найти, заменив его производной d /d , которую можно вычислить, используя соотношение (2), что даёт

. (8)

Для случая малых углов , когда cos  1, из (8) получаем

Наряду с угловой дисперсией D используют также линейную дисперсию D l , которая определяется линейным расстоянием l между спектральными линиями на экране, отнесённым к разности их длин волн :

где D – угловая дисперсия, f – фокусное расстояние линзы (см. рис. 1). Вторая формула (10) справедлива для малых углов  и получается, если учесть, что для таких углов l f .

Чем больше разрешающая способность R и дисперсия D , тем качественнее любой спектральный прибор, содержащий, в частности, дифракционную решётку. Формулы (5) и (9) показывают, что хорошая дифракционная решётка должна содержать большое число штрихов N и иметь малый период d . Кроме того, желательно использовать спектры больших порядков (с большими значениями k ). Однако, как отмечалось выше, такие спектры плохо видны.

Целью данной лабораторной работы является определение длины световых волн в различных областях спектра при помощи дифракционной решётки. Схема установки показана на рис. 4. Роль источника света играет прямоугольное отверстие (щель) А в шкале Шк, освещаемое лампой накаливания с матовым экраном S . Глаз наблюдателя Г, находящийся сзади дифракционной решётки ДР, наблюдает мнимое изображение щели в тех направлениях, в которых световые волны, идущие от различных щелей решётки, взаимно усиливаются, т. е. в направлениях главных максимумов.

Рис. 4. Схема лабораторной установки

Исследуются спектры не выше третьего порядка, для которых в случае используемой дифракционной решётки углы дифракции  малы, в связи с чем их синусы можно заменить тангенсами. В свою очередь, тангенс угла , как видно из рис. 4, равен отношению y /x , где y – расстояние от отверстия A до мнимого изображения спектральной линии на шкале, а x – расстояние от шкалы до решётки. Таким образом,

. (11)

Тогда вместо формулы (2) будем иметь , откуда

2. ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

1. Установите, как показано на рис. 4, шкалу с отверстием А на один конец оптической скамьи вблизи от лампы накаливания S , а дифракционную решётку – на другой её конец. Включите лампу, перед которой находится матовый экран.

2. Передвигая решётку по скамье, добейтесь, чтобы красная граница правого спектра первого порядка (k = 1) совпала с каким-либо целым делением на шкале Шк; запишите его значение y в табл. 1.

3. Используя линейку, измерьте расстояние x для этого случая и также занесите его значение в табл. 1.

4. Проделайте те же операции для фиолетовой границы правого спектра первого порядка и для середины зелёного участка, расположенного в средней части спектра (в дальнейшем эта середина будет для краткости называться зелёной линией); значения x и y для этих случаев также занесите в табл. 1.

5. Аналогичные измерения проделайте для левого спектра первого порядка (k = 1), занося результаты измерений в табл. 1.

Учтите, что для левых спектров любого порядка k y.

6. Те же самые операции проделайте для красной и фиолетовой границ и для зелёной линии спектров второго порядка; данные измерений занесите в ту же таблицу.

7. Занесите в табл. 3 ширину дифракционной решётки L и значение периода решётки d , которые указаны на ней.

Таблица 1

Спектр лампы

накаливания

x , см

y , см

i , нм

 i =  i , нм

Фиолетовая

3. ОБРАБОТКА ОПЫТНЫХ ДАННЫХ

    По формуле (12) рассчитайте длины волн  i для всех проведённых измерений

(d = 0,01 см). Внесите их значения в табл. 1.

2. Найдите средние значения длин волн отдельно для красной и фиолетовой границ сплошного спектра и изучаемой зелёной линии, а также средние арифметические ошибки определения  по формулам

где n = 4 – число измерений для каждого участка спектра. Занесите величины и в табл. 1.

3. Результаты измерений представьте в виде табл. 2, куда запишите границы видимого спектра и длину волны наблюдаемой зелёной линии, выраженные в нанометрах и ангстремах, взяв в качестве  средние значения полученных длин волн из табл. 1.

Таблица 2

4. По формуле (6) определите полное число штрихов решётки N , а затем с помощью формул (5) и (9) вычислите разрешающую способность R и угловую дисперсию решётки D для спектра второго порядка (k = 2).

5. Пользуясь формулой (3) и пояснением к ней, определите максимальное число спектров k max , которые можно получить с помощью данной дифракционной решётки, используя в качестве  среднюю длину волны наблюдаемой зелёной линии.

6. Вычислите частоту  наблюдаемой зелёной линии по формуле  = c /, где с – скорость света, взяв в качестве  также величину .

Все рассчитанные в пп. 46 величины занесите в табл. 3.

Таблица 3

4. КОНТРОЛЬНЫЕ ВОПРОСЫ

1. В чём состоит явление дифракции и когда дифракция наиболее заметно выражена?

Дифракцией волн называется огибание волнами препятствий. Дифракция света – это совокупность явлений, наблюдаемых при распространении света сквозь малые отверстия, вблизи границ непрозрачных тел и т.д. и обусловленных волновой природой света. Явление дифракции, общее для всех волновых процессов, имеет особенности для света, а именно здесь, как правило, длина волны λ много меньше размеров d преград (или отверстий). Поэтому наблюдать дифракцию можно только на достаточно больших расстояниях l от преграды (l > d 2 / λ).

2. Что такое дифракционная решётка и для чего подобные решётки используются?

Дифракционной решеткой называют всякую периодическую структуру, влияющую на распространение волн той или иной природы. Дифракционной решеткой осуществляется многолучевая интерференция когерентных дифрагированных пучков света, идущих от всех щелей.

3. Что обычно представляет собой прозрачная дифракционная решётка?

Прозрачные дифракционные решетки обычно представляют собой стеклянную пластинку, на которой алмазом с помощью специальной делительной машины прочерчены полосы (штрихи). Эти штрихи являются почти полностью непрозрачными промежутками между неповрежденными частями стеклянной пластинки – щелями.

4. Каково назначение линзы, используемой вместе с дифракционной решёткой? Что служит линзой в данной работе?

Для сведения лучей, идущих под одним и тем же углом φ, в одну точку используется собирающая линза, обладающая свойством собирать параллельный пучок лучей в одной из точек своей фокальной плоскости, куда помещается экран. Роль линзы в данной работе играет хрусталик глаза наблюдателя.

5. Почему при освещении белым светом в центральной части дифракционной картины возникает белая полоса?

Белый свет является немонохроматическим светом, содержащим набор волн различных длин. В центральной части дифракционной картинки k = 0 образуется центральный максимум нулевого порядка, следовательно, возникает белая полоса.

6. Дайте определение разрешающей способности и угловой дисперсии дифракционной решётки.

Основными характеристиками дифракционной решетки являются её разрешающая способность R и дисперсия D.

Обычно для характеристики дифракционной решетки используют не минимальное значение Δλ, когда линии видны раздельно, а безразмерную величину

Угловая дисперсия D определяется угловым расстоянием δφ между двумя спектральными линиями, отнесенным к разности их длин волн δλ:

Она показывает быстроту изменения угла дифракции φ лучей в зависимости от изменения длины волны λ.

ПомощьюМетодичка >> Физика

Расчетной формулой для вычисления длин световых волн при помощи дифракционных решеток. Измерение длины волны сводится к определению угла отклонения лучей...

Размер: px

Начинать показ со страницы:

Транскрипт

1 Лабораторная работа 3 Определение длины световой волны при помощи дифракционной решетки ЦЕЛЬ РАБОТЫ Ознакомление с прозрачной дифракционной решеткой, определение длин волн спектра источника света (лампы накаливания). ПРИБОРЫ И ПРИНАДЛЕЖНОСТИ 1. Дифракционная решетка 2. Лампа накаливания 3. Линейная установка для определения длины волны света. КРАТКАЯ ТЕОРИЯ Дифракция света явление, состоящее в отклонении от законов геометрической оптики и возникающее при прохождении световых волн вблизи непрозрачных препятствий, соизмеримых с длиной световых волн. Различают два вида дифракции: 1. При дифракции Френеля дифракционная картина образована расходящимся пучком лучей, имеющих сферический волновой фронт. 2. При дифракции Фраунгофера дифракционная картина образована системами параллельных лучей, имеющих плоский волновой фронт. В этом случае дифракционная картина в виде темных и светлых полос наблюдается только с помощью линзы, собирающей лучи в фокальной плоскости. Рассмотрим дифракцию Фраунгофера на дифракционной решетке. Дифракционная решетка представляет собой плоскую прозрачную пластину, на которой нанесены чередующиеся прозрачные и непрозрачные полосы. 1 из 8

2 Сумму ширины прозрачной и непрозрачной полос называют постоянной решетки d, или ее периодом. d a b период решетки Рис. 1. Дифракционная решетка Рассмотрим элементарную теорию дифракционной решетки. Направим перпендикулярно плоскости решетки монохроматический пучок света, т.е. плоскую монохроматическую волну длиной. В соответствии с принципом Гюйгенса-Френеля каждая точка волнового фронта может рассматриваться как самостоятельный источник вторичных волн. Эти источники когерентны. Каждая щель решетки ведет себя как точечный источник вторичных волн при условии, что ширина щели меньше длины волны. В этом случае дифракционная решетка представляет собой набор точечных когерентных источников S 1, S 2, S 3, S n (рис. 1), расположенных в щелях решетки и испускающих световые колебания во всех направлениях. Падающий на дифракционную решетку параллельный пучок лучей в результате дифракции изменит свою структуру. После решетки угол отклонения лучей от первоначального направления составляет от 0 до 90 вправо и влево (рис. 2). 2 из 8

3 Если за дифракционный решеткой поместить собирающую линзу, то в фокальной плоскости линзы можно наблюдать дифракционную картину, являющуюся результатом двух процессов: дифракции света от каждой щели решетки и многолучевой интерференции от всех щелей. Основные черты этой картины определяются вторым процессом. Рис. 2 Так как на решетку падает плоская волна, то лучи одного и того же направления, выходящие из различных щелей, имеют одинаковые начальные фазы. Линза не вносит разности фаз. Следовательно, разность фаз может создаваться только за счет разности хода лучей до линзы, согласно рис.2. AB d sin В случае когда, разность хода лучей, выходящих из соответственно расположенных точек двух соседних щелей, равна целому числу длин волн света, волны будут усиливать друг друга (максимум интенсивности). k, (k = 0, 1, 2, 3,) 3 из 8

4 Таким образом, разность хода любых лучей, идущих в этом направлении: Nd sin Nk, где N равно разности номеров щелей. Следовательно, все лучи, выходящие из двух соседних щелей под углом (N 1), удовлетворяют условию d sin k (1) При интерференции, они будут усиливать друг друга, и на экране будет наблюдаться максимум интенсивности света. Уравнение (1) является основным при практическом использовании дифракционных решеток. Измерив углы, соответствующие положениям дифракционных максимумов, и зная длину волны света, можно найти постоянную решетки d, или наоборот, зная d, определить длину волны света. В центральной световой полосе, изображение которой создается пучком, параллельным падающему суммируется действия всех лучей, независимо от длины волны (центральный максимум). k 0, sin 0 Справа и слева от центрального максимума располагаются световые полосы, для которых k = 1, 2, 3, 4,... Они называются дифракционными максимумами 1-го, 2-го... и k-го порядка. Согласно уравнению (1) различным значениям соответствуют различные углы (в дифракционных максимумах одного порядка). Поэтому при 4 из 8

5 освещении решетки белым светом в фокальной плоскости линзы образуется ряд дифракционных спектров, перекрывающих друг друга (рис. 3). Решая уравнение (1) относительно, получим: d sin k (2) Это выражение является основной расчетной формулой для вычисления длин световых волн. В данной лабораторной работе определение длины волны света приводят с помощью гониометра и линейной установки. Рис. 3. Дифракционная картина решетки в зеленом (верхний ряд) и белом свете ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА Экспериментальная установка состоит из деревянного бруска прямоугольного сечения, на верхней стороне которого нанесена миллиметровая шкала. В пазах бруска перемещается подвижный экран Э, на который наклеена миллиметровая шкала. Оптическая схема представлена на рис из 8

6 Нуль шкалы расположен посередине экрана, где имеется щель. Глаз видит дифракционные спектры, которые проецируются на экран Э. Рис. 4 Угол дифракции, под которым виден дифракционный максимум, мал, поэтому можно принять, что: b sin tg, l (3) где b l расстояние до дифракционного максимума на экране; расстояние от дифракционной решетки до экрана. Подставляя (3) в (2), получаем: d b, k l (4) где d период решетки; k порядок спектра. 6 из 8

7 ХОД РАБОТЫ 1. Зажгите электрическую лампочку. Укрепите прибор так, чтобы горизонтальная рейка была на уровне глаз. 2. Установите в рамку дифракционную решетку. Определите период дифракционной решетки d (указана на самой решетке). 3. На расстоянии l1 20см поместите подвижный экран. 4. Приблизив глаз к дифракционной решетке, направьте прибор на источник света так, чтобы сквозь узкую щель на экране была видна нить накала лампы. На черном фоне по обе стороны щели будут видны симметричные спектры. 5. Определите по шкале экрана расстояние b кр до красных, а также до фиолетовых лучей b фиол в спектре первого (k 1) и второго порядка (k 2) сначала по одну сторону от центрального максимума, затем по другую. 6. Аналогичные измерения проведите для расстояния l2 30см. 7. Пользуясь формулой (4), вычислите длину волны кр красного света и фиолетового света. фиол 8. Данные занесите в таблицу. 9. Определите средние значения длин волн кр и фиол. 10. Сравните полученные данные с табличными. 11. Сделайте выводы. 7 из 8

8 Таблица Положение k d, м b кр, м b фиол, м l, м кр, нм фиол, нм слева 1 0,2 справа 1 0,2 слева 2 0,2 справа 2 0,2 слева 1 0,3 справа 1 0,3 слева 2 0,3 справа 2 0,3 Среднее значение КОНТРОЛЬНЫЕ ВОПРОСЫ 1. Сформулируйте принцип Гюйгенса-Френеля. 2. Какие волны называются когерентными? 3. В чем заключается явление дифракции? 4. При каких условиях наблюдается дифракция? 5. Какова роль линзы в получения дифракционной картины? 6. Условие максимумов для дифракционной решетки. 7. Каков порядок следования цветов в дифракционных спектрах? 8. Чем будут отличаться дифракционные картины, полученные от решеток с различными постоянными, но и одинаковым числом штрихов? 9. Что такое длина волны? 8 из 8


Лабораторная работа 5а Определение длины световой волны с помощью дифракционной решетки. Цель работы: изучение явления дифракции света и использование, этого явления для определения длины световой волны.

Государственное высшее учебное заведение «ДОНЕЦКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» Кафедра физики ОТЧЁТ по лабораторной работе 84 ОПРЕДЕЛЕНИЕ ДЛИНЫ СВЕТОВОЙ ВОЛНЫ С ПОМОЩЬЮ ДИФРАКЦИОННОЙ РЕШЁТКИ

Министерство образования Республики Беларусь Учреждение образования «Белорусский государственный университет информатики и радиоэлектроники» Кафедра физики ЛАБОРАТОРНАЯ РАБОТА.7 ИЗУЧЕНИЕ ДИФРАКЦИИ ФРАУНГОФЕРА

Расчетно-графическое задание посвящено разделу волновой оптики дифракции. Цель работы изучение дифракции на дифракционной решетке. Краткая теория явления дифракции. Дифракция это явление, которое присуще

Лабораторная работа 3 ОПРЕДЕЛЕНИЕ ДЛИНЫ ВОЛНЫ С ПОМОЩЬЮ ДИФРАКЦИОННОЙ РЕШЕТКИ Цели работы: Изучение дифракционной решетки как спектрального прибора. В процессе работы необходимо: 1) найти длины волн спектральных

Лабораторная работа 6 ИЗУЧЕНИЕ ДИФРАКЩОННОЙ РЕШЕТКИ Дифракцией света называется явление, состоящее в отклонении направления распространения световых волн от направлений, определяемых геометрической оптикой.

ЛАБОРАТОРНАЯ РАБОТА 272 ОПРЕДЕЛЕНИЕ ДЛИНЫ ВОЛНЫ МОНОХРОМАТИЧЕСКОГО СВЕТА С ПОМОЩЬЮ ДИФРАКЦИОННОЙ РЕШЕТКИ 1. Цель работы: определение длины волны лазерного света с помощью дифракционной решетки. 2. Теоретические

Работа 5. ИЗУЧЕНИЕ ДИФРАКЦИИ СВЕТА НА ОДИНОЧНОЙ ЩЕЛИ И ДИФРАКЦИОННОЙ РЕШЕТКЕ Цель работы: 1) наблюдение картины дифракции Фраунгофера от одиночной щели и дифракционной решетки в монохроматическом свете;

Специализированный учебно-научный центр - факультет МГУ им. М.В. Ломоносова, Школа имени А.Н. Колмогорова Кафедра физики Общий физический практикум Лабораторная работа Измерение длин световых волн в сплошном

ЛАБОРАТОРНАЯ РАБОТА 48 ИЗУЧЕНИЕ ДИФРАКЦИИ СВЕТА НА ДИФРАКЦИОННОЙ РЕШЕТКЕ Цель работы изучение дифракции света на одномерной дифракционной решетке, определение длины волны излучения полупроводникового лазера.

Работа 25а ИЗУЧЕНИЕ ЯВЛЕНИЙ, ОБУСЛОВЛЕННЫХ ДИФРАКЦИЕЙ Цель работы: наблюдение дифракции света на дифракционной решетке, определение периода дифракционной решетки и области пропускания светофильтров Оборудование:

Лабораторная работа 0 ИЗУЧЕНИЕ ДИФРАЦИОННОЙ РЕШЕТКИ Приборы и принадлежности: Спектрометр, осветитель, дифракционная решетка с периодом 0,0 мм. Введение Дифракцией называется совокупность явлений, наблюдаемых

ЛАБОРАТОРНАЯ РАБОТА 8- ИЗУЧЕНИЕ ДИФРАКЦИОННОЙ РЕШЕТКИ Цель работы: изучение дифракции света на одномерной дифракционной решетке и определение ее характеристик: периода дифракционной решетки, угловой дисперсии.

ЛАБОРАТОРНАЯ РАБОТА 3.3 ОПРЕДЕЛЕНИЕ ДЛИНЫ СВЕТОВОЙ ВОЛНЫ С ПОМОЩЬЮ ДИФРАКЦИОННОЙ РЕШЕТКИ 1. Цель работы Целью данной работы является изучение явления дифракции света на примере дифракционной решетки и

Дифракция света Лекция 4.2. Дифракция света Дифракция - совокупность явлений, наблюдаемых при распространении света в среде с резкими неоднородностями (края экранов, малые отверстия) и связанных с отклонениями

Ярославский государственный педагогический университет им. К.Д. Ушинского Лабораторная работа 8 Определение параметров дифракционной решетки Роуланда Ярославль 010 Оглавление 1. Вопросы для подготовки

ЛАБОРАТОРНАЯ РАБОТА 47 ИЗУЧЕНИЕ ДИФРАКЦИИ В ПАРАЛЛЕЛЬНЫХ ЛУЧАХ (ДИФРАКЦИЯ ФРАУНГОФЕРА) Цель работы наблюдение дифракционной картины при дифракции в параллельных лучах на одной и двух щелях; определение

Министерство образования Российской Федерации Томский политехнический университет Кафедра теоретической и экспериментальной физики «УТВЕРЖДАЮ» Декан ЕНМФ И.П. Чернов 00 г. ДИФРАКЦИЯ Методические указания

РАБОТА 6 Исследование дифракции Френеля на круглом отверстии и круглом диске Цель работы: изучение явления дифракции света на простейших объектах и измерение их основных параметров. Введение Дифракцией

ЛАБОРАТОРНАЯ РАБОТА 6 (8) ИЗУЧЕНИЕ ПРОЗРАЧНОЙ ДИФРАКЦИОННОЙ РЕШЁТКИ Цель работы: Ознакомление с прозрачной дифракционной решёткой определение длин волн красного и зелёного цветов определение дисперсии

Лабораторная работа 20 Определение длин волн линий спектра излучения с помощью дифракционной решетки Цель работы: ознакомление с прозрачной дифракционной решеткой; определение длин волн спектра источника

КАЗАНСКАЯ ГОСУДАРСТВЕННАЯ АРХИТЕКТУРНО-СТРОИТЕЛЬНАЯ АКАДЕМИЯ Кафедра физики МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ЛАБОРАТОРНЫМ РАБОТАМ ПО ФИЗИКЕ для студентов специальностей 2903, 2906, 2907, 2908, 2910 Лабораторная

Тема 2. Дифракция света Задачи для самостоятельного решения. Задача 1. Между точечным источником света и экраном поместили диафрагму с круглым отверстием, радиус которого r можно менять. Расстояния от

Министерство образования и науки Российской Федерации Федеральное агентство по образованию Cаратовский государственный технический университет Измерение длины световой волны с помощью дифракционной решетки

Лабораторная работа 43 б Изучение дифракции света на дифракционной решётке Лабораторная работа разработана следующими преподавателями кафедры физики МГУЛ: - аспирант Усатов И.И., доц. ЦарьгородцевЮ.П.

Министерство образования и науки РФ Федеральное агентство по образованию Российский государственный университет нефти и газа им. И.М. Губкина Кафедра физики http://physics.gubkin.ru ЛАБОРАТОРНАЯ РАБОТА

1 Тема: Волновые свойства света: дифракция Дифракцией называется явление огибания волнами препятствий, встречающихся на их пути, или в более широком смысле любое отклонение распространения волн вблизи

Дифракция света Дифракция отклонение распространения волн от законов геометрической оптики вблизи препятствий (огибание волнами препятствий). О б л а с т ь г е о м е т р и ч е с к о й т е н и Дифракция

4.. Волновая оптика Основные законы и формулы Абсолютный показатель преломления однородной прозрачной среды n = c / υ, где c скорость света в вакууме, а υ скорость света в среде, значение которой зависит

3 Цель работы: изучение влияния ширины узкой щели на вид дифракционной картины при наблюдении в свете лазера. Задача: проградуировать щель регулируемой ширины, используя положение минимумов дифракционной

Лабораторная работа 3.05 ДИФРАКЦИЯ ФРАУНГОФЕРА НА ЩЕЛЯХ И ДИФРАКЦИОННЫХ РЕШЕТКАХ М.В. Козинцева, Т.Ю. Любезнова, А.М. Бишаев Цель работы: исследование особенностей дифракции Фраунгофера световых волн на

Методические указания к выполнению лабораторной работы 3..3 ИЗУЧЕНИЕ ДИФРАКЦИИ ОТ ЩЕЛИ В ЛУЧАХ ЛАЗЕРА Степанова Л.Ф. Волновая оптика: Методические указания к выполнению лабораторных работ по физике / Л.Ф.

Восточно-Сибирский государственный университет технологий и управления Кафедра «Физика» Дифракция света Лекция 4.2 Дифракция света совокупность явлений, наблюдаемых при распространении света в среде с

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ДИЗАЙНА И ТЕХНОЛОГИИ НОВОСИБИРСКИЙ ТЕХНОЛОГИЧЕСКИЙ

Министерство образования и науки Российской Федерации Томский государственный университет систем управления и радиоэлектроники (ТУСУР) Кафедра физики ИЗУЧЕНИЕ ДИФРАКЦИИ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ НА ДВУМЕРНОЙ

ЛАБОРАТОРНАЯ РАБОТА 42 ИЗУЧЕНИЕ ИНТЕРФЕРЕНЦИИ В ОПЫТЕ С БИПРИЗМОЙ ФРЕНЕЛЯ Цель работы изучение интерференции света в опыте с бипризмой Френеля. Оценка длины волны лазерного излучения и преломляющего угла

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «МАМИ» Кафедра физики ЛАБОРАТОРНАЯ РАБОТА 3.05 Изучение дифракции Фраунгофера от одной щели Москва 2008 г. 1 ЛАБОРАТОРНАЯ РАБОТА 3.05 Изучение дифракции

Оптика Волновая оптика Спектральные приборы. Дифракционная решетка В состав видимого света входят монохроматические волны с различными значениями длин. В излучении нагретых тел (нить лампы накаливания)

3 Цель работы: ознакомиться с отражательной дифракционной решеткой. Задача: определить с помощью дифракционной решетки и гониометра длины волн линий спектра ртутной лампы и угловую дисперсию решеткит Приборы

ДИФРАКЦИЯ СВЕТА 1. Вычислить радиус r шестой зоны Френеля для плоской монохроматической волны (λ = 546 нм), если точка наблюдения находится на расстоянии b = 4,4 м от фронта волны. 2. Вычислить радиус

Исследование дифракции света Липовская М.Ю., Яшин Ю.П. Введение. Свет может проявлять себя либо как волна, либо как поток частиц, что носит название корпускулярно - волнового дуализма. Интерференция и

Индивидуальное задание N 6 «Волновая оптика» 1.1. Экран освещается двумя когерентными источниками света, находящимися на расстоянии 1 мм друг от друга. Расстояние от плоскости источников света до экрана

Лабораторная работа 3.21 ДИФРАКЦИЯ ЛАЗЕРНОГО СВЕТА НА ЩЕЛИ. ДИФРАК- ЦИЯ ФРЕНЕЛЯ. Г.Э. Бугров, А.М. Бишаев Цель работы: Изучение явления дифракции света на щели. По картине, получаемой на экране, определить

Лабораторная работа 5.4 ДИФРАКЦИОННАЯ РЕШЕТКА 5.4.1. Цель работы Целью работы является знакомство с моделированием процесса сложения когерентных электромагнитных волн и экспериментальное исследование закономерностей

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО-СТРОИТЕЛЬНЫЙ

Занятие 24 Волновая оптика https://www.youtube.com/watch?v=0u4jaasz9f4 учебное видео Задача 1 Разложение пучка солнечного света в спектр при прохождении его через призму объясняется тем, что свет состоит

Министерство образования и науки Российской Федерации Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «УФИМСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» УТВЕРЖДАЮ Проректор-директор

Лабораторная работа 6, Евгений Павлов, РЭ- Цель работы: изучение дифракции Френеля на круглом отверстии, щели и перехода к дифракции Фраунгофера; определение параметров отверстий различной формы при изучении

Примеры решения задач Пример Свет с длиной волны падает нормально на длинную прямоугольную щель ширины b Найдите угловое распределение интенсивности света при фраунгоферовой дифракции а также угловое положение

1 Лабораторная работа 3 04 ИЗМЕРЕНИЕ ДЛИНЫ ВОЛНЫ ИЗЛУЧЕНИЯ ЛАЗЕРА ИЗ ОПЫТОВ ПО ИНТЕРФЕРЕНЦИИ Часть 1. Исследование интерференции света с помощью бипризмы Френеля Цель работы: сформулировать гипотезу исследования,

ЛАБОРАТОРНАЯ РАБОТА 3.04 ИЗУЧЕНИЕ СПЕКТРА ДИФРАКЦИОННОЙ РЕШЕТКИ С ПОМОЩЬЮ ГОНИОМЕТРА 1. Цель работы Целью работы является изучение явления дифракции и ознакомление с методом определения длины волны света

Работа ИНТЕРФЕРЕНЦИЯ СВЕТА В ОПТИЧЕСКОЙ СХЕМЕ С БИПРИЗМОЙ ФРЕНЕЛЯ Цель работы: наблюдение явления интерференции света и определение длины волны света в оптической схеме с бипризмой Френеля. Введение Интерференцией

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО-СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ Кафедра физики МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ЛАБОРАТОРНЫМ РАБОТАМ ПО ФИЗИКЕ для студентов

Лабораторная работа 43 a Изучение дифракции Фраунгофера Лабораторная работа разработана следующими преподавателями кафедры физики МГУЛ: - аспирант Усатов И.И., доц. Царьгородцев Ю.П. проф. Полуэктов Н.П.

Интерференция Дифракция Волновая оптика Основные законы оптики Закон прямолинейного распространения света Свет в оптически однородной среде распространяется прямолинейно Закон независимости световых пучков

И.О. Заплатина Ю.Л. Чепелев ОПРЕДЕЛЕНИЕ ДЛИНЫ ВОЛНЫ ИЗЛУЧЕНИЯ ЛАЗЕРНОЙ УКАЗКИ ДИФРАКЦИОННЫМ МЕТОДОМ Екатеринбург 2013 МИНОБРНАУКИ РОССИИ ФГБОУ ВПО «УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ ЛЕСОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Специализированный учебно-научный центр - факультет МГУ им. М.В. Ломоносова, Школа имени А.Н. Колмогорова Кафедра физики Общий физический практикум Лабораторная работа 4.6 Опыт Юнга. Изучение волновых

ИЗУЧЕНИЕ ЯВЛЕНИЯ ИНТЕРФЕРЕНЦИИ: ОПЫТ ЮНГА Цель работы - изучение явления интерференции света на примере опыта Юнга, изучение интерференционной картины, получаемой в опыте Юнга, исследование зависимости

0050. Дифракция лазерного излучения Цель работы: Определение ширины щели и постоянной дифракционных решеток по дифракционным картинам на экране наблюдения Требуемое оборудование: Модульный учебный комплекс

Ярославский государственный педагогический университет им. К. Д. Ушинского Лабораторная работа 3 Определение длины световой волны при помощи бипризмы Френеля Ярославль 2009 Оглавление 1. Вопросы для подготовки

ДИФРАКЦИЯ ФРАУНГОФЕРА. Насрединов Ф.С., Хрущева Т.А., Штельмах К.Ф. Цель работы: ознакомление на опыте с особенностями дифракции света на узкой щели и периодических объектах - дифракционной решетке и сетке.

Лабораторная работа 4. Исследование дифракции Фраунгофера на дифракционной решётке Методическое руководство Москва 04 г. Исследование дифракции Фраунгофера на дифракционной решетке. Цель работы Изучение

КАЗАНСКАЯ ГОСУДАРСТВЕННАЯ АРХИТЕКТУРНО-СТРОИТЕЛЬНАЯ АКАДЕМИЯ Кафедра физики Лабораторная работа 53 ИЗУЧЕНИЕ ДИФРАКЦИИ СВЕТА НА ЗОННОЙ ПЛАСТИНКЕ МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ЛАБОРАТОРНЫМ РАБОТАМ ПО ФИЗИКЕ для

Лабораторная работа 3.07 ДИФРАКЦИОННАЯ РЕШЕТКА КАК СПЕКТРАЛЬНЫЙ ПРИБОР Н.А. Экономов, А.М. Попов. Цель работы: экспериментальное определение угловой дисперсии дифракционной решетки и расчёт её максимальной

Лабораторная работа 3.15. ДИФРАКЦИОННАЯ РЕШЕТКА КАК СПЕКТРАЛЬНЫЙ ПРИБОР А.И. Бугрова Цель работы: Экспериментальное определение периода и угловой дисперсии дифракционной решетки как спектрального прибора.

Вариант 1. 1. Монохроматический свет длиной волны 0,6мкм падает нормально на диафрагму с отверстием диаметром 6мм. Сколько зон Френеля укладывается в отверстии, если экран расположен в 3м за диафрагмой

РАБОТА 3.0 ДИФРАКЦИЯ СВЕТА Задача 1. Исследовать дифракцию света в параллельных лучах на щели.. По известной длине волны источника света определить ширину щели, длину волны неизвестного источника света.

ЛАБОРАТОРНАЯ РАБОТА 46 ОПРЕДЕЛЕНИЕ ДЛИНЫ СВЕТОВОЙ ВОЛНЫ ПРИ ПОМОЩИ ДИФРАКЦИОННОЙ РЕШЕТКИ И ГОНИОМЕТРА. Цель работы: определение длины световой волны видимой части спектра паров ртути. Теоретические основы

Лабораторная работа 7 Исследование дифракции Фраунгофера в сходящейся волне Теория При дифракции плоской световой волны на достаточно больших предметах (1 мм) дифракционная картина, согласно /24/, возникает

Цель работы : Определить длину световой волны, используя дифракционную решетку .

Оборудование:

1. Прибор для определения длины световой волны, состоящий из линейки, пластины с дифракционной решеткой и движка со щелью.

2. Штатив.

3. Электрическая лампочка на напряжение 42 В в патроне.

Краткая теория

Как известно, свет представляет собой электромагнитные волны , которые характеризуются длиной световой волны. Дифракционная решетка служит для выделения из света с разными длинами волн света с определенной длиной волны или, как говорят, разложения света на его спектральные компоненты . Основой работы дифракционной решетки служат явления дифракции и интерференции света, и именно волновая природа света приводит к возникновению указанных выше двух явлений.

Дифракцией называется отклонение распространения света от прямолинейного в область, где при прямолинейном распространении света должна бы была быть тень.

Интерференцией называется сложение световых пучков, ведущее к образованию светлых и темных полос.

Дифракция. Дифракция наблюдается в случаях, когда свет проходит сквозь прозрачный материал, в котором есть непрозрачные небольшие препятствия, либо через небольшие отверстия в непрозрачном материале.

Различают два типа дифракции: дифракция в параллельных пучках света или дифракция Фраунгофера и дифракция в расходящемся пучке света – дифракция Френеля . В первом случае для наблюдения дифракционной картины используют либо солнечные лучи, которые являются параллельными, либо создают параллельный пучок света, используя простейшую оптическую систему – выпуклую линзу. Во втором случае используется точечный источник света, например, лампа с малыми размерами спирали.

Схема наблюдения дифракции Фраунгофера приведена на рис. 1.

Рис.1. Дифракция Фраунгофера.

В случае прямолинейного распространения света параллельный пучок лучей, сформированный линзой 1, пройдя через круглое отверстие в непрозрачном экране 1 и через фокусирующую линзу 2, должен был бы собраться в точку. Однако, из-за дифракции на экране 2 получается сложная дифракционная картина, состоящая из чередования светлых и темных колец.

Интерференция. При интерференции волны света с одинаковыми длинами волн максимально усиливают друг друга, когда приходят в точку наблюдения в одинаковой фазе , и ослабляют друг друга, когда приходят в противофазе . Суть явления интерференции поясняет рис.2.

Рис. 2. Интерференция от 2-х источников.

Точечные источники света В 1 и В 2 расположены друг от друга на расстоянии t. Колебания электромагнитного поля совершаются в этих точках в одной и той же фазе. Интерференция (т.е. сложение или вычитание колебаний) наблюдается в точках А и С на экране, находящемся на большом расстоянии L по сравнению t и l. В оптике установлено, что для максимального усиления волн разность хода (т.е. разность расстояний от источников до точки наблюдения) должно выполняться условие:

,

а для максимального ослабления волн:

, где n – целое число.

Из Рис. 2 можно определить разность хода . Тогда, используя предыдущие равенства, можно получить, что светлые полосы располагаются на расстоянии от точки А, расстояние между светлыми полосами , а темные полосы располагаются между светлыми. Очевидно, что в точке А разность хода равна нулю и в этой точке наблюдается сложение колебаний от источников света В 1 и В 2

Дифракционная решетка . Ряд прозрачных щелей, разделенных непрозрачными полосами, называется дифракционной решеткой . Дифракционная картина, которая имела место на одной щели при использовании дифракционной решетки, усложняется, так как кроме дифракции на каждой щели происходит еще и интерференция световых волн от щелей, которые можно рассматривать как источники света. На экране возникают максимумы и минимумы света, причем главные максимумы возникают при значении угла j , удовлетворяющих соотношению , где - период решетки равный сумме ширины щели и полосы. Положение 1-го максимума при определяется выражением

Из (1) видно, что для данной дифракционной решетки положения 1-го максимума для различных длин волн разное: чем больше длина волны света, тем больше угол отклонения наблюдаемого максимума от направления падающего пучка света.

Программа работы

Схема прибора приведена на рис.3.


Рис.3. Прибор для определения длины волны.

1. Включить электрическую лампочку.

2. Глядя через дифракционную решетку, направить прибор на лампочку так, чтобы через щель в движке была видна нить накала лампы. На черном фоне движка по обе стороны от нуля должны быть видны дифракционные спектры, состоящие из полос разного цвета. Если полосы располагаются не параллельно шкале, то это означает, что нить накала не параллельна штрихам на решетке. В этом случае надо повернуть немного либо дифракционную решетку, либо лампочку. Закрепить прибор.

3. Определить расстояние от щели на движке (нуля) до красной полосы слева на шкале.

4. Определить расстояние от щели на движке (нуля) до красной полосы справа на шкале. Записать это значение в таблицу.

5. Определить среднее значение расстояния до красной полосы по формуле:

Записать это значение в таблицу.

6. Определить расстояние от щели на движке (нуля) до фиолетовой полосы слева на шкале. Записать это значение в таблицу.

7. Определить расстояние от щели на движке (нуля) до фиолетовой полосы справа на шкале. Записать это значение в таблицу.

8. Определить среднее значение расстояния до фиолетовой полосы по формуле:

Записать это значение в таблицу.

9. Определить расстояние от дифракционной решетки до движка. Записать это значение в таблицу.