20.09.2019

Положительный и отрицательный заряд. Числовые характеристики степени поляризации. Индуцированный заряд. Электроскоп


Нам приходится буквально отлеплять одну от другой свежевыстиранные и доставаемые из сушилки вещи, или когда мы никак не можем привести в порядок наэлектризованные и буквально встающие дыбом волосы. А кто не пробовал подвесить воздушный шарик к потолку, после трения его о голову? Подобное притяжение и отталкивание является проявлением статического электричества . Подобные действия называются электризацией .

Статическое электричество объясняется существованием в природе электрического заряда . Заряд является неотъемлемым свойством элементарных частиц . Заряд, который возникает на стекле при трении его о шелк, условно называют положительным , а заряд, возникающий на эбоните при трении о шерсть, - отрицательным .

Рассмотрим атом. Атом состоит из ядра и, летающих вокруг него, электронов (на рисунке синие частицы). Ядро состоит из протонов (красные) и нейтронов (черные).

.

Носителем отрицательного заряда является электрон, положительного - протон. Нейтрон - нейтральная частица, не имеет заряда.

Величина элементарного заряда - электрона или протона, имеет постоянное значение и равна

Весь атом нейтрально заряжен, если количество протонов соответствует электронам. Что произойдет, если один электрон оторвется и улетит? У атома станет на один протон больше, то есть положительных частиц больше, чем отрицательных. Такой атом называют положительным ионом . А если присоединится один электрон лишний - получим отрицательный ион . Электроны, оторвавшись, могут не присоединятся, а некоторое время свободно перемещаться, создавая отрицательный заряд. Таким образом, в веществе свободными носителями заряда являются электроны, положительные ионы и отрицательные ионы.

Для того, чтобы имелся свободный протон, необходимо, чтобы разрушилось ядро, а это означает разрушение атома целиком. Такие способы получения электрического заряды мы рассматривать не будем.

Тело становится заряженным, когда оно содержит избыток одних или иных заряженных частиц (электронов, положительных или отрицательных ионов).

Величина заряда тела кратна элементарному заряду. Например, если в теле 25 свободных электронов, а остальные атомы являются нейтральными, то тело заряжено отрицательно и его заряд составляет . Элементарный заряд не делим - это свойство называется дискретностью

Одноименные заряды (два положительных или два отрицательных) отталкиваются , разноименные (положительный и отрицательный) - притягиваются

Точечный заряд - это материальная точка , которая имеет электрический заряд.

Закон сохранения электрического заряда

Замкнутая система тел в электричестве - это такая система тел, когда между внешними телами нет обмена электрическими зарядами.

Алгебраическая сумма электрических зарядов тел или частиц остается постоянной при любых процессах, происходящих в электрически замкнутой системе.

На рисунке пример закона сохранения электрического заряда. На первой картинке два тела разноименного заряда. На втором рисунке те же тела после соприкосновения. На третьем рисунке в электрически замкнутую систему внесли третье нейтральное тело и тела привели во взаимодействие друг с другом.

В каждой ситуации алгебраическая сумма заряда (с учетом знака заряда) остается постоянной.

Главное запомнить

1) Элементарный электрический заряд - электрон и протон
2) Величина элементарного заряда постоянна
3) Положительный и отрицательный заряды и их взаимодействие
4) Носителями свободных зарядов являются электроны, положительные ионы и отрицательные ионы
5) Электрический заряд дискретен
6) Закон сохранения электрического заряда

То, что отрицательные заряды помогают и дают хорошие результаты при разных заболеваниях показывают не только современные исследования, но и ряд исторических документов, собранных на протяжении столетий.

Все живые организмы, в том числе и человек, рождаются и развиваются в естественных условиях планеты Земля, которая имеет одну важную особенность - наша планета представляет собой постоянно отрицательно заряженное поле, а атмосфера вокруг земли имеет положительный заряд. Это означает, что каждый организм "запрограммирован" рождаться и развиваться в условиях постоянного электрического поля, существующего между отрицательно заряженной землёй и положительно заряженной атмосферой, которое играет очень существенную роль для всех биохимических процессов в организме.

  • острые пневмонии;
  • хронический бронхит;
  • бронхиальная астма (кроме гормонозависимой);
  • туберкулез (неактивная форма);

Заболевания желудочно-кишечного тракта:

  • ожоги;
  • обморожения;
  • пролежни;
  • экзема;
  • Предоперационная подготовка и послеоперационная реабилитация:

    • спаечная болезнь;
    • повышение иммунного статуса.

    Инфракрасное излучение

    Источником инфракрасного излучения является колебание атомов вокруг своего состояния равновесия у живых и не живых элементов.

    Микросферы в составе Активатора «На здоровье!» имеют уникальное свойство накапливать инфракрасное излучение и тепло тела человека и возвращать его обратно.

    Все виды волн короткого спектра после видимого света, жестко влияют на все живые организмы и потому опасны, и вредны. Чем короче длинна волны, тем жестче излучение. Эти волны, попадая на живую ткань, выбивают на своём уровне, электроны в молекулах, а позже и разрушают и сам атом. В результате образуются свободные радикалы, которые приводят к онкологическим, и радиационной болезни.

    Волны по другую сторону видимого спектра не вредны из-за более длинной волны. Весь инфракрасный спектр занимает от 0,7 – 1000 мкм (микрометров). Диапазон человека составляет от 6 – 12 мкм. Для сравнения, вода имеет 3 мкм и потому человек не может долго находится в горячей воде. Даже при 55 градусах, не более 1-го часа. Клетки организма при такой длине волны не чувствуют себя комфортно и работать хорошо не могут, в результате сопротивляются и дают сбои в работе. Воздействуя на клетки теплом, с длинной волны соответствующим теплу клетки, клетка получая родное тепло работает лучше. Инфракрасные лучи её подогревают.

    Нормальная температура для прохождения окислительно-востановительных реакций в нутрии клетки, составляет 38-39 градусов Цельсия, и если температура понижается, то процесс метаболизма замедляется или останавливается.

    Что происходит при воздействии инфракрасного тепла? Механизм спасения от перегревания:

    • Потоотделение.
    • Усиленная циркуляция крови.
    • Потоотделение.
    • Потовые железы на коже выделяют жидкость. Жидкость испаряется и охлаждает тело от перегревания.
    • Усиленная циркуляция крови.

    Артериальная кровь поступает к нагретому участку тела. Венозная - отводится, забирая часть тепла. Тем самым охлаждая участок от перегрева. Эта система похожа на радиатор. Кровь к участку перегрева поступает через капилляры. И чем больше капилляров тем лучше будет происходить отток крови. Допустим, что мы имеем 5-ть капилляров, а для того чтобы спасти от перегрева нам необходимо 50. Перед организмом стоит задача не допустить перегрев. И если мы будем прогревать этот участок регулярно, то он нарастит (увеличит) количество капилляров, в прогреваемом участке. Научно доказано, что организм человека может увеличивать количество капилляров в 10-ть раз! Учёные доказали. Что процесс старения у человека зависит от уменьшения капилляров. В пожилом возрасте количество капилляров уменьшается, особенно в ногах и венах ног. Даже в 120-ем возрасте восстановление капилляров – возможно.

    Итак: если прогревать определённый участок тела, регулярно, то организм нарастит в прогреваемом месте количество капилляров. Избавляя участок от постоянного перегрева. В добавок, тепло будет способствовать нормальной работе клеток, потому, что мы подогревая клетки улучшаем процесс метаболизма (обмена веществ). Это будет способствовать, восстановлению прогреваемых тканей и к ним будет возвращаться эластичность и упругость. Если есть проблемы такие как мозоль, натоптыши, шипы, шпоры, отложение солей, кожные заболевания, грибки на стопах инфракрасное тепло будет приводить ускоренному процессу регенерации (восстановления).

    Лимфо-дренажный эффект.

    Клетки со всех сторон омываются межклеточной жидкостью. Межклеточная жидкость собираясь отводится от тканей с помощью лимфатической системы. С помощью капилляров к каждой клетке приходит артериальная кровь. Отводится от клетки, венозная кровь. В процессе жизнедеятельности отработанные вещества, частично попадают в венозную кровь и частично в межклеточную жидкость. В случае наступления, какой либо болезни или стресса, механического воздействия, травм, может произойти такая ситуация, как - межклеточное вещество не успевает выносить шлаки (отработанные материалы в процессе жизнедеятельности клетки). Это известный термин – зашлакованость. Зашлакованость напрямую, связана с плохим оттоком лимфы. К шлакам путем диффузии подтягивается лишняя или неактивная вода, что приводит к отеку органа или тканей. Инфракрасное тепло улучшает отток лимфы, что приводит к выводу шлаков и избыточной воды (удаляет отечность). Снижается угроза заболевания раком, улучшается трофика тканей (питание клеток), где каждая клетка может обновляться. Межклеточное вещество, подымаясь по лимфотоку попадает в лимфоузел, который является фильтром.

    В лимфоузлах присутствуют белые клетки крови – лимфоциты (они выполняют роль стражей), они борются с инфекциями, вирусами и с онкологическими клетками в том числе. Клетки крови образуются в костном мозге.

    Воздействие инфракрасного тепла на вены и сосуды.

    Сосуды имеют внутри гладкую поверхность, чтобы эритроциты могли скользить по внутреннему руслу. Качество внутренней поверхности зависит, от количества капилляров внутри стенки сосуда. В следствии стресса, в пожилом возрасте, в результате табакокурения, внутри крупного сосуда нарушается микроциркуляция, что приводит к ухудшению состояния стенки сосуда. Стенка сосуда перестаёт быть гладкой и эластичной. Холестерин и крупные фракции образуют остеросклеротическую бляшку, затрудняя поток крови по данному руслу. По суженному руслу ухудшается поток крови, что способствует повышению давления. Инфракрасное тепло возобновляет ток по капиллярам внутри стенки сосуда, после чего внутренняя стенка приобретает гладкость и эластичность, а специальные системы в самой крови разъедают тромб (бляшку).

    Электрический заряд является физической величиной, которая присуща некоторым элементарным частицам. Он проявляет себя через силы притяжения и отталкивания между заряженными телами посредством электромагнитного поля. Рассмотрим физические свойства заряда и виды зарядов.

    Общее представление об электрическом заряде

    Материя, которая имеет отличный от нуля электрический заряд, активно взаимодействует с электромагнитным полем и, в свою очередь, создает это поле. Взаимодействие заряженного тела с электромагнитным полем является одним из четырех типов силовых взаимодействий, которые известны человеку. Говоря о зарядах и видах зарядов, следует отметить, что с точки зрения стандартной модели электрический заряд отражает способность тела или частицы обмениваться носителями электромагнитного поля - фотонами - с другим заряженным телом или электромагнитным полем.

    Одна из важных характеристик различных видов заряда - сохранение их суммы в изолированной системе. То есть общий заряд сохраняется сколь угодно длительное время независимо от типа взаимодействия, которое имеет место внутри системы.

    Электрический заряд не является непрерывным. В экспериментах Роберта Милликена была продемонстрирована дискретная природа электрического заряда. Виды зарядов, существующие в природе, могут быть положительными или отрицательными.

    Положительные и отрицательные заряды

    Носителями двух видов зарядов являются протоны и электроны. По историческим причинам заряд электрона считается отрицательным, имеет значение -1 и обозначается -e. Протон имеет положительный заряд +1 и обозначается +e.

    Если тело содержит больше протонов, чем электронов, то оно считается положительно заряженным. Ярким примером положительного вида заряда в природе является заряд стеклянной палочки после того, как ее потрут шелковой тканью. Соответственно, если тело содержит больше электронов, чем протонов, оно полагается отрицательно заряженным. Этот вид электрического заряда наблюдается на пластиковой линейке, если ее потереть шерстью.

    Отметим, что заряд протона и электрона хоть и очень маленький, он не является элементарным. Обнаружены кварки - "кирпичики", образующие элементарные частицы, которые имеют заряды ±1/3 и ±2/3 относительно заряда электрона и протона.

    Единица измерения

    Виды зарядов, как положительные, так и отрицательные, в международной системе единиц СИ измеряются в кулонах. Заряд в 1 кулон - это очень большой заряд, который определяется как проходящих за 1 секунду через поперечное сечение проводника при силе тока в нем, равной 1 ампер. Одному кулону соответствует 6,242*10 18 свободных электронов. Это означает, что заряд одного электрона равен -1/(6,242*10 18) = - 1,602*10 -19 кулона. Это же значение, только со знаком плюс, характерно для другого вида зарядов в природе - положительного заряда протона.

    Краткая история электрического заряда

    Еще со времен античной Греции известно, что если потереть кожу о янтарь, то он приобретает способность притягивать к себе легкие тела, например, солому или перья птиц. Это открытие принадлежит греческому философу Фалесу Милетскому, который жил 2500 лет назад.

    В 1600 году английский медик Уильям Гилберт заметил, что многие материалы ведут себя подобно янтарю, если их потереть. Слово "янтарь" в древнегреческом языке звучит как "электрон". Гилберт стал использовать этот термин для всех подобных явлений. Позже появились другие термины, такие как "электричество" и "электрический заряд". В своих работах Гилберт также смог различить магнитные и электрические явления.

    Открытие существования притяжения и отталкивания между электрически заряженными телами принадлежит физику Стефану Грею. Первым ученым, который предположил существование двух видов электрических зарядов, был французский химик и физик Шарль Франсуа Дюфе. Явление электрического заряда также подробно исследовал Бенджамин Франклин. В конце XVIII века французский физик Шарль Огюстен де Кулон открыл свой знаменитый закон.

    Тем не менее все указанные наблюдения смогли оформиться в стройную теорию электричества только к середине XIX века. Здесь следует отметить важность работ Майкла Фарадея по изучению процессов электролиза и Джеймса Максвелла, который полностью описал электромагнитные феномены.

    Современные представления о природе электричества и дискретном электрическом заряде обязаны своим существованием работам Джозефа Томсона, который открыл электрон, и Роберта Милликена, который измерил его заряд.

    Магнитный момент и электрический заряд

    Виды заряда выделил еще Бенджамин Франклин. Их два: положительный и отрицательный. Два заряда одинакового знака отталкиваются, а противоположного - притягиваются.

    С появлением квантовой механики и физики элементарных частиц было показано, что помимо электрического заряда частицы обладают магнитным моментом, который носит название спина. Благодаря электрическим и магнитным свойствам элементарных частиц в природе существует электромагнитное поле.

    Принцип сохранения электрического заряда

    В соответствии с результатами множества экспериментов, принцип сохранения электрического заряда гласит, что не существует ни какого-либо способа разрушения заряда, ни его создания из ничего, и что в любых электромагнитных процессах в изолированной системе полный электрический заряд сохраняется.

    В результате процесса электризации общее количество протонов и электронов не изменяется, существует лишь разделение зарядов. Электрический заряд может появиться в какой-либо части системы, где раньше его не было, но общий заряд системы при этом все равно не изменится.

    Плотность электрического заряда

    Под плотностью заряда понимается его количество на единицу длины, площади или объема пространства. В связи с этим говорят о трех типах его плотности: линейной, поверхностной и объемной. Поскольку существует два вида заряда, плотность также может быть положительной и отрицательной.

    Несмотря на то что электрический заряд квантован, то есть является дискретным, в ряде опытов и процессов количество его носителей настолько велико, что можно считать, что они распределены по телу равномерно. Это хорошее приближение позволяет получить ряд важных экспериментальных законов для электрических явлений.

    Исследуя на крутильных весах поведение двух точечных зарядов, то есть таких, для которых расстояние между ними значительно превышает их размеры, Шарль Кулон в 1785 году открыл закон взаимодействия между электрическими зарядами. Этот закон ученый сформулировал следующим образом:

    Величина каждой силы, с которой взаимодействуют два точечных заряда в покое, прямо пропорциональна произведению их электрических зарядов и обратно пропорциональна квадрату расстояния, разделяющего их. Силы взаимодействия направлены вдоль линии, которая соединяет заряженные тела.

    Отметим, что закон Кулона от вида зарядов не зависит: изменение знака заряда лишь изменит направление действующей силы на противоположное, сохранив при этом ее модуль. Коэффициент пропорциональности в законе Кулона зависит от диэлектрической постоянной среды, в которой рассматриваются заряды.

    Таким образом, формула для кулоновской силы записывается в следующем виде: F = k*q 1 *q 2 /r 2 , где q 1, q 2 - величины зарядов, r - расстояние между зарядами, k = 9*10 9 Н*м 2 /Кл 2 - коэффициент пропорциональности для вакуума.

    Константа k через универсальную диэлектрическую постоянную ε 0 и диэлектрическую постоянную материала ε выражается следующим образом: k = 1/(4*pi*ε*ε 0), здесь pi - число пи, а ε > 1 для любой среды.

    Закон Кулона не справедлив в следующих случаях:

    • когда заряженные частицы начинают двигаться, и особенно когда их скорости приближаются к около световым скоростям;
    • когда расстояние между зарядами мало по сравнению с их геометрическими размерами.

    Интересно отметить, что математический вид закона Кулона совпадает с таковым для закона всемирного тяготения, в котором роль электрического заряда играет масса тела.

    Способы передачи электрического заряда и электризация

    Под электризацией понимается процесс, в результате которого электрически нейтральное тело приобретает отличный от нуля заряд. Этот процесс связан с перемещением элементарных носителей заряда, чаще всего электронов. Наэлектризовать тело можно с помощью следующих способов:

    • В результате контакта. Если заряженным телом прикоснуться к другому телу, состоящему из проводящего материала, то последнее приобретет электрический заряд.
    • Трение изолятора о другой материал.
    • Электрическая индукция. Суть этого явления заключается в перераспределении электрических зарядов внутри тела за счет воздействия электрического внешнего поля.
    • Явление фотоэффекта, при котором электроны вырываются из твердого тела за счет воздействия на него электромагнитного излучения.
    • Электролиз. Физико-химический процесс, который происходит в расплавах и растворах солей, кислот и щелочей.
    • Термоэлектрический эффект. В данном случае электризация возникает за счет градиентов температуры в теле.

    Исходя из наблюдений за взаимодейст-вием электрически заряженных тел, амери-канский физик Бенджамин Франклин назвал одни тела заряженными положительно, а другие — отрицательно. Соответственно этому и электрические заряды называют поло-жительными и отрицательными .

    Тела с одноименными зарядами отталки-ваются. Тела с разноименными зарядами притяги-ваются.

    Эти названия зарядов вполне условные, и единственное их значение состоит в том, что тела, имеющие электрические заряды, могут либо притягиваться, либо отталки-ваться.

    Знак электрического заряда тела опре-деляют по взаимодействию с условным эта-лоном знака заряда.

    В качестве одного из таких эталонов взят заряд эбонитовой палочки, потертой мехом. Считается, что эбонитовая палочка после натирания мехом всегда имеет отрицатель-ныйзаряд.

    В случае если необходимо определить, какой знак заряда данного тела, его под-носят к закрепленной в легком подвесе эбонитовой палочке, потертой мехом, и наблюдают взаимодействие. Если палочка отталкивается, то тело имеет отрицатель-ный заряд.

    После открытия и изучения элементар-ных частичек выяснилось, что отрицатель-ный заряд всегда имеет элементарная части-ца — электрон.

    Электрон (от греч. — янтарь) — стабильная элементарная части-ца с отрицательным электриче-ским зарядом e = 1,6021892(46) . 10 -19 Кл, массой покоя m e = 9,1095 . 10 -19 кг. Открыт в 1897 г. английским физиком Дж. Дж. Томсоном.

    Как эталон положительного заряда взят заряд стеклянной палочки, потертой нату-ральным шелком. Если палочка отталки-вается от наэлектризованного тела, то это тело имеет положительный заряд.

    Положительный заряд всегда имеет про-тон, который входит в состав атомного яд-ра. Материал с сайта

    Пользуясь вышеизложенными правила-ми для определения знака заряда тела, нужно помнить, что он зависит от вещества взаимодействующих тел. Так, эбонитовая па-лочка может иметь положительный заряд, если ее потереть тканью из синтетических материалов. Стеклянная палочка будет иметь отрицательный заряд, если ее потереть ме-хом. Поэтому, планируя получить отрица-тельный заряд на эбонитовой палочке, сле-дует обязательно пользоваться при натира-нии мехом или шерстяной тканью. Это же касается и электризации стеклянной палоч-ки, которую для получения положительного заряда натирают тканью из натурального шелка. Лишь электрон и протон всегда и однозначно имеют отрицательный и поло-жительный заряды соответственно.

    На этой странице материал по темам:

    • Что являкться условным эталоном отрицательного заряда?

    • Что является условным эталоном отрицательного заряда

    • Что является условным эталоном положительного заряда?

    • То являеться условным эталоеом отпицательного заряда

    • Все тела окружающего нас мира состоят из двух видов стабильных частиц - протонов, заряженных положительно, и электронов, имеющих такой же заряд е отрицательного знака. Число электронов равно числу протонов. Поэтому Вселенная электрически нейтральна.

      Так как электрон и протон никогда (во всяком случае, за последние 14 миллиардов лет ) не распадаются, то Вселенная не может нарушить своей нейтральности какими-либо воздействиями со стороны человека. Все тела обычно также электрически нейтральны, т. е. содержат одинаковое число электронов и протонов.

      Для того чтобы тело сделать заряженным, из него нужно уда-лить, перенеся на другое тело, или добавить к нему, взяв из другого тела, некоторое число N электронов или протонов. Заряд тела станет равным Ne. При этом необходимо помнить (о чем обычно забывают ), что такой же заряд обратного знака (Ne) неизбежно образуется на другом теле (или телах). Натирая шерстью эбонитовую палочку, мы заряжаем не только эбонит, но и шерсть, перенося с одного на другое часть электронов.

      Утверждение о притяжении двух тел с одинаковыми разноименными зарядами по принципам верификации и фальсификации научно, так как может быть в принципе подтверждено или опровергнуто эксперимен-тально. Здесь опыт может быть поставлен чисто, без вовлечения третьих тел, простым перенесением части электронов или протонов с одного опытного тела на другое.

      Совсем иная картина с утверждением об отталкивании одноименных зарядов. Дело в том, что только два , например положительных, заряда q1, q2 для проведения эксперимента не могут быть созданы , так как при попытке их создания всегда неизбежно появляется третий , отрицательный заряд q3 = -(qi + q2). Поэтому в опыте будут обязательно участвовать не два, а три заряда . Провести эксперимент с двумя одноименными зарядами в принципе невозможно.

      Поэтому утверждение Кулона об отталкивании одноименных зарядов по упомянутым принципам ненаучно.

      По той же причине невозможен и опыт с двумя зарядами разных знаков q1, - q2, если эти заряды не равны друг другу. Здесь также неизбежно появляется третий заряд q3 = q1 - q2, который участвует во взаимодействии и оказывает влияние на результирующую силу .

      Наличие третьего заряда забывается и не учитывается слепыми сторонниками Кулона. Два тела с одинаковыми зарядами разных знаков могут быть созданы разрывом атомов на две заряженные части и переносом этих частей с одного тела на другое. При таком разрыве необходимо совершить работу и затратить энергию. Естественно, что заряженные части будут стремиться вернуться в исходное состояние с меньшей энергией и соединиться, т. е. должны притягиваться друг к другу.

      С точки зрения близкодействия любое взаимодействие предполагает наличие обмена между взаимодействующими телами чем-то материальным, а мгновенное действие на расстоянии и телекинез невозможны. Электростатические взаимодействия между зарядами осуществляются постоянным электрическим полем. Мы не знаем что это такое, но можем с уверенностью утверждать, что поле материально, так как оно обладает энергией, массой, импульсом и конечной скоростью распространения.

      Принятые для изображения электрического поля силовые линии выходят из одного заряда (положительного) и не могут обрываться в пустоте, а всегда входят в другой (отрицательный) заряд. Они как щупальцы тянутся от одного заряда к другому, соединяя их. Для уменьшения энергии системы зарядов объем, занимаемый полем, стремится к минимуму. Поэтому протянутые «щупальцы» электрического поля всегда стремятся к сокращению подобно упругим, натянутым при зарядке резинкам. Вот за счет этого сокращения и осуществляется притяжение разноименных зарядов. Силу притяжения можно измерить экспериментально. Она и дает закон Кулона.

      Совсем другое дело в случае одноименных зарядов. Суммарное электрическое поле двух зарядов выходит из каждого из них и уходит в бесконечность, а контакта полей одного и другого зарядов не достигается. Упругие «щупальцы” одного заряда не достигают другого. Поэтому нет и прямого материального воздействия одного заряда на другой, им нечем взаимодействовать. Поскольку телекинез мы не признаем, то, следовательно, не может быть никакого отталкивания.

      А как же тогда объяснить расхождение лепестков элероскопа и наблюдаемое в опытах Кулона отталкивание зарядов? Вспомним, что когда мы создаем для нашего опыта два положительных заряда, то в окружающем пространстве неизбежно образуем и отрицательный заряд.

      Вот притяжение к нему ошибочно и принимается за отталкивание .