26.02.2019

Video - La mia caldaia a combustibile solido. Pompa di circolazione e gruppo idraulico


Elemento di una caldaia fissa predisposta per la raccolta e la distribuzione ambiente di lavoro si chiama , che unisce un gruppo di canne collettore.

L'elemento della caldaia, destinato a raccogliere e distribuire il mezzo di lavoro, a separare il vapore dall'acqua, a purificare il vapore e ad immagazzinare l'acqua nella caldaia, è chiamato tamburellare.

Viene chiamato l'elemento della caldaia, progettato per trasferire calore al mezzo di lavoro o all'aria superficie riscaldante.

Viene chiamata la superficie riscaldante della caldaia, che riceve calore principalmente per irraggiamento superficie radiante.

Viene chiamata la superficie riscaldante della caldaia, che riceve calore principalmente per convezione superficie convettiva il riscaldamento.

Viene chiamata la superficie riscaldante di una caldaia fissa, situata sulle pareti del forno e dei condotti del gas e proteggendole dall'esposizione alle alte temperature schermo.

Viene chiamato un gruppo di tubi della superficie convettiva generatrice di vapore di una caldaia fissa, collegati da comuni collettori o tamburi pacco caldaia.

Viene chiamato il tubo della caldaia, attraverso il quale l'acqua di ricircolo entra nel collettore di distribuzione delle colonne montanti o del tamburo inferiore pluviale.

Viene chiamato il tubo della caldaia, attraverso il quale la miscela vapore-acqua viene scaricata dal collettore a schermo in un tamburo o in un ciclone esterno tubo di uscita dello schermo.

Viene chiamato un tubo non riscaldato, attraverso il quale il mezzo di lavoro viene trasferito da un elemento della superficie riscaldante all'altro tubo di bypass.

Viene chiamato il tubo attraverso il quale vengono soffiati o rimossi acqua e vapore dagli elementi delle superfici riscaldanti della caldaia tubo di spurgo.

Viene chiamato un dispositivo per aumentare la temperatura del vapore al di sopra della temperatura di saturazione corrispondente alla pressione nella caldaia surriscaldatore.

Viene chiamato un dispositivo riscaldato dai prodotti della combustione del combustibile e progettato per il riscaldamento o la vaporizzazione parziale dell'acqua che entra nella caldaia economizzatore.

Viene chiamato un dispositivo per riscaldare l'aria dai prodotti della combustione del combustibile prima di essere immessa nel forno della caldaia Riscaldatore d'aria.

Viene chiamato il dispositivo di una caldaia progettata per separare l'acqua dal vapore dispositivo di separazione.

Dispositivo di abbassamento della temperatura vapore surriscaldato chiamato desurriscaldatore.

Vettore struttura in metallo, che percepisce il carico dalla massa della caldaia, tenendo conto dei carichi temporanei e speciali e fornisce la posizione relativa richiesta degli elementi della caldaia, è chiamato carcassa.

Viene chiamato un dispositivo caldaia progettato per la combustione di combustibili fossili, il raffreddamento parziale dei prodotti della combustione e la separazione delle ceneri focolare.

Viene chiamato il forno a caldaia progettato per bruciare combustibile organico grumoso solido in uno strato focolare a strati.

Viene chiamato il forno a caldaia a strati, in cui il caricamento del combustibile e la rimozione di scorie e ceneri è parzialmente meccanizzato forno semimeccanico.

Viene chiamato il forno a strati della caldaia, in cui il caricamento del combustibile e la rimozione di scorie e ceneri vengono effettuati manualmente percorso a mano.

Viene chiamato il forno a strati della caldaia, in cui il caricamento del combustibile e la rimozione di scorie e ceneri è completamente meccanizzato focolare meccanico.

Viene chiamato un forno a caldaia in cui viene bruciato combustibile polverizzato, liquido o gassoso in una torcia forno a camera.

Viene chiamato il forno a camera di una caldaia a circolazione multipla della miscela aria-combustibile, ottenuta da una forma speciale delle pareti del forno, dalla disposizione dei bruciatori e dal metodo di alimentazione del combustibile e dell'aria forno a vortice.

Viene chiamato il forno a camera della caldaia, in cui la maggior parte del combustibile viene bruciata in un flusso d'aria combustibile rotante forno a ciclone.

Viene chiamato il forno a caldaia, in cui parte del combustibile solido viene bruciato in uno strato e frazioni fini e gas combustibili in un flusso d'aria sopra lo strato forno a cannello.

Viene chiamata la parte del forno della caldaia in cui avviene l'accensione e la combustione della maggior parte del combustibile Camera di combustione.

Viene chiamata la parte del forno della caldaia in cui il combustibile brucia e i prodotti della combustione vengono parzialmente raffreddati camera di raffreddamento.

costrizione locale sezione trasversale forno a caldaia, chiamato spremere la fornace.

Viene chiamata la parte della fornace in cui avviene il riscaldamento, l'essiccazione del combustibile e talvolta la sua accensione e combustione preforno.

Viene chiamata la parte inferiore del forno a camera della caldaia, progettata per rimuovere le scorie solide imbuto freddo.

Viene chiamata la parte inferiore del forno della caldaia, formata da superfici o schermi orizzontali e leggermente inclinati parte inferiore.

Viene chiamato il canale destinato a dirigere i prodotti della combustione del combustibile e posizionare le superfici riscaldanti della caldaia canna fumaria.

Viene denominata la parte inferiore della canna fumaria della caldaia, destinata a raccogliere le ceneri in caduta dal flusso dei prodotti della combustione cestino della cenere.

Viene chiamato il bunker per la raccolta delle scorie solide, situato sotto l'imbuto freddo di una caldaia fissa bidone delle scorie.

Viene chiamato un dispositivo per la raccolta e la rimozione delle scorie fuse, situato sotto il focolare di una caldaia fissa bagno di scorie.

21.01.2017

Costruire da soli una caldaia per riscaldamento è un buon modo per risparmiare denaro. Ci sono molte modifiche alle caldaie che puoi realizzare da solo. Tuttavia, il più semplice di questi, forse, è la caldaia Kholmov. Questo dispositivo, per almeno, all'inizio, sembra a malapena abbastanza efficace, e quindi molti preferiscono altri design. In parte, queste persone hanno ragione, perché l'efficienza del riscaldatore Kholmov non è così elevata, ma il suo circuito è estremamente semplice, il che semplifica notevolmente il processo di produzione.

Il dispositivo e le caratteristiche del design della caldaia Kholmov

La caldaia di Kholmov significa un design del tipo ad albero. Ciò significa che in questo caso la camera di combustione, così come la sezione con lo scambiatore di calore, sono disposte verticalmente. Tali caldaie funzionano con combustibile solido, che può anche essere legna da ardere. Potenza modelli industriali, che può essere acquistato in specializzato punti vendita, è 10, 12 e 25 kilowatt. Se il vano carburante è completamente carico, può fornire il riscaldamento continuo di una stanza di medie dimensioni entro 12-16 ore.

Tutte le caldaie Kholmov possono essere di due tipi:

  • volatile;
  • non volatile.

Ora diamo un'occhiata più da vicino organizzazione interna il riscaldatore descritto. Quindi, include tali elementi costruttivi:

  • telaio;
  • termostato;
  • miniera di carburante;
  • ingresso/uscita necessari per ingresso, uscita e scarico, installazione di un gruppo di sicurezza o valvole di sicurezza;
  • una camera in cui si trova lo scambiatore di calore;
  • tubo di derivazione per il collegamento di un tubo del camino;
  • grattugiare;
  • compensatori di dilatazione termica;
  • porte;
  • cenere.

Come puoi vedere, non ci sono molti elementi. Per quanto riguarda il peso, ad esempio, una caldaia con una capacità di 12 kilowatt pesa circa 255 chilogrammi. Le dimensioni standard sono le seguenti (HxLxP): 124x48,5x66 centimetri. Per questo motivo, non avrai difficoltà a portare una caldaia del genere, diciamo, in una porta. I modelli con una potenza di 10 kilowatt differiscono poco da quelli sopra descritti (sia in termini di parametri che in termini di aspetto esteriore), ma la differenza principale risiede nel design interno.

Le porte superiori del dispositivo sono doppie e all'interno è presente un materiale di isolamento termico (infatti, per questo motivo, non si riscaldano oltre gli 80 gradi). I bordi delle porte sono incollati con sigillante di amianto e per la verniciatura viene utilizzata una speciale vernice resistente al calore. Sono presenti 4 viti a sgancio rapido per chiudere la back cover, tutto il resto è chiuso con appositi lucchetti. Inoltre, la porta inferiore del vano cenere è chiusa solo per il 40 percento con materiale termoisolante, ma la sua temperatura, di regola, non supera i 90 gradi, poiché l'elemento viene raffreddato da correnti d'aria permanenti.

Informazioni importanti! Il fondo della camera non è il massimo parte inferiore dispositivo di riscaldamento. Quest'ultima è una piastra speciale con un paio di gambe lunghe e un isolante termico situato all'interno.

Grazie a tutto ciò, la caldaia Kholmov ha ricevuto non solo un'efficienza abbastanza elevata, ma anche un grado sufficiente di sicurezza antincendio. Di conseguenza, il dispositivo può essere installato anche su un pavimento in legno.

Se consideriamo in particolare i modelli non volatili del riscaldatore Kholmov, sono inoltre dotati di una ventola o di un aspiratore di fumo, nonché di un controller speciale progettato per controllare il processo. Tuttavia, i dispositivi non volatili sono ancora i più popolari. Il processo di lavoro in essi è regolato per mezzo di uno speciale termostato, che si trova sulla parete frontale. Questo termostato è collegato tramite una catena a una piccola porta del ventilatore.

La porta stessa è progettata per fornire aria nella caldaia, necessaria per mantenere il processo di combustione. Si trova sull'anta grande del vano cenere. Il tutto non viene mai chiuso, in quanto deve essere previsto un apposito interstizio per il minimo passaggio delle masse d'aria.

Nella parte superiore della parte posteriore c'è un tubo di derivazione e ad esso è collegato a sua volta un camino. Questo elemento, tra l'altro, ha lo scopo di creare una trazione naturale. Di conseguenza, l'aria viene fornita al dispositivo attraverso lo sportello del ventilatore. Dietro un paio di griglie in ghisa (che, tra l'altro, sono rimovibili) c'è una griglia saldata ausiliaria, che è anche chiamata gobba, perché si trova sopra un paio di altre.

Sotto grattugiare c'è una scatola della cenere (in essa viene raccolta la cenere). Se la porta è aperta, questo cassetto può essere facilmente estratto per una pulizia successiva. Il fluido di lavoro viene scaricato attraverso uno speciale tubo da mezzo pollice, che si trova nella parte inferiore della caldaia. Un elemento simile è disponibile per il tubo del fusibile o il gruppo di sicurezza. I prodotti per la ricezione e il "ritorno" hanno taglia più grande, il tubo di ritorno si trova in basso e l'uscita è in alto.

Informazioni importanti! Per evitare l'espansione del dispositivo di riscaldamento a dimensioni critiche e la divergenza delle cuciture, nel dispositivo sono presenti compensatori di dilatazione.

Questi ultimi sono disponibili lungo il perimetro della caldaia. Inoltre, sono nel corpo: sono realizzati sotto forma di tramezzi / aste. La distanza tra le pareti divisorie è di 24 centimetri. Per quanto riguarda lo scambiatore di calore, tali compensatori non sono previsti dal progetto, poiché le dimensioni di questo elemento gli consentono di salvare la propria forma.

Video - Come funziona la caldaia Kholmov con una capacità di 25 kilowatt

Caratteristiche del funzionamento delle caldaie da miniera

L'aria entra sotto la griglia e direttamente nella caldaia attraverso la porta del ventilatore, quindi il combustibile viene bruciato. Quando ciò accade, si formano i gas di scarico, che vengono rimossi attraverso lo spazio vuoto del gas. La caldaia di Kholmov ha un design tale che il volume d'aria fornito attraverso la porta del ventilatore inizialmente non è sufficiente per una corretta combustione. Di conseguenza, durante il funzionamento del dispositivo si osserva una certa ustione chimica.

Nel nostro caso, la combustione chimica indica che durante l'ossidazione non si forma anidride carbonica pura, ma è la stessa, ma già in combinazione con monossido di carbonio. L'aria che passa sotto la griglia ausiliaria viene aspirata nei fori su di essa. Il numero di questi fori è tale che la quantità di aria secondaria è già eccessiva. Lo stress da calore in questo luogo è piuttosto elevato e può raggiungere i 700-800 gradi, a seguito del quale i resti di monossido di carbonio vengono ossidati.

Informazioni importanti! Se guardi nello spioncino, che si trova nella porta superiore posteriore, vedrai che il fuoco esplode dai fori sulla griglia ausiliaria (giallo o bluastro, come quando si brucia il gas).

Dopo l'ossidazione, il gas si sposta nel compartimento di irraggiamento della camera di combustione. Lì si mescola, sale e si divide in un paio di corsi d'acqua grazie allo scambiatore. Inoltre, attraverso il tubo di uscita, il gas entra direttamente nel camino. L'energia termica convettiva viene prelevata dallo scambiatore e dalle pareti ad esso adiacenti. Il fluido di lavoro dopo essere passato attraverso l'ingresso, rispettivamente, colpisce la parete, dopodiché si diffonde e si muove attraverso l'intero dispositivo tra lo scambiatore di calore e le camere. Il liquido di raffreddamento già riscaldato viene fornito all'impianto di riscaldamento attraverso il tubo di uscita nella parte superiore del dispositivo.

Disegno caldaia

Istruzioni fai-da-te per realizzare una caldaia Kholmov

Sotto è istruzioni passo passo per creare una caldaia Kholmov da soli. La potenza del dispositivo da considerare è di 8-10 kilowatt.

In base ai disegni mostrati nel video qui sotto, le dimensioni del prodotto saranno simili a questa:

  1. 0,8 metri di altezza;
  2. 0,47 metri di larghezza;
  3. 0,576 metri di profondità (se aggiungi una porta con il collo, ottieni 0,63 metri).

Video - Caldaia a combustibile solido da miniera

Fase uno. Prepariamo tutto ciò di cui hai bisogno

Per la fabbricazione della caldaia Kholmov, a colpo sicuro, acquisisci:

  • lamiera d'acciaio con uno spessore di 0,3-0,4 centimetri;
  • un'asta di ferro con un diametro di 1 centimetro e una lunghezza di 47 centimetri;
  • cordone di amianto (dimensioni consigliate - 1,5x1,5 centimetri);
  • tubi: il diametro dovrebbe essere 1,5, 2, 4 e 11,5 centimetri.

Per quanto riguarda la quantità Forniture, quindi dovrebbe essere selezionato in base al disegno selezionato. Certo, non dimenticare un piccolo margine.

Fase due. Costruire l'interno

Questa parte è, infatti, una struttura composta da quattro pareti e dotata di un divisorio idrico. Il processo di produzione dovrebbe iniziare proprio dalla costruzione di questa partizione d'acqua. L'elemento dovrebbe assomigliare a questo:

  1. 48,5 centimetri di altezza;
  2. 40,3 centimetri di larghezza;
  3. 6 centimetri di profondità.

Quanto alla parete divisoria, si tratta, infatti, di una coppia di pareti verticali, alle quali sono saldati il ​​fondo e il cielo. Al centro è necessario saldare un compensatore, che è a forma di U elemento metallico. Questo compensatore è saldato all'inizio a una delle pareti. Se parliamo di partizioni finali, in questo caso non sono necessarie.

Quindi, per realizzare il calderone di Kholmov, devi aderire al seguente algoritmo di azioni.

Passo 1. Tagliare le pareti laterali interne del riscaldatore dalla lamiera. Se guardi i video e i disegni, puoi concludere che l'altezza di queste pareti varia da 77 centimetri e la larghezza è di 54,6 centimetri. Tuttavia, questi non sono rettangoli ordinari, perché un rettangolo dovrebbe trovarsi davanti all'angolo inferiore tipo verticale con dimensioni di 20,8x8 centimetri, e sullo stesso lato, ma in alto, orizzontale con dimensioni di 38,7x3 centimetri. Inoltre, è necessario praticare dei fori su questi lati per una partizione dell'acqua. Dovrebbero trovarsi a 2 centimetri dal lato superiore e a 10,2 centimetri dal retro.

Passaggio 3 Salda tutti gli elementi sopra descritti in un'unica struttura. Usalo con questo saldatura a punti. Quindi i dettagli saranno combinati in un tutto, ma se necessario, avrai l'opportunità di modificare la loro posizione.

Passaggio 4 Successivamente, è necessario saldare un paio di archi di metallo. Il primo dovrebbe essere a forma di U e il secondo - solido. Fissare il primo nella parte inferiore della struttura saldata e il secondo in alto. È importante che l'angolo tra questi elementi e le pareti sia di 90 gradi. Per quanto riguarda il telaio, puoi ritagliarlo dalla stessa lamiera, anche se, in opzione, puoi saldarlo utilizzando strisce di metallo larghe 3 centimetri ciascuna.

Passaggio 5 Successivamente, fai bollire accuratamente ciascuna delle cuciture.

Passaggio 6 Crea un'altra cornice a forma di lettera "P". Allo stesso tempo, le sue dimensioni dovrebbero essere tali da poter essere facilmente inserita all'interno dell'unità. Installa questo telaio sopra la partizione dell'acqua (la distanza tra loro dovrebbe essere di 9 centimetri).

Passaggio 7 Alle parti superiori dei rettangoli sporgenti nella parte anteriore, saldare orizzontalmente una striscia di ferro lunga 40,3 centimetri e larga 8 centimetri.

Passaggio 8 Nella parte superiore del lato posteriore, praticare un foro rotondo con un diametro di 11,5 centimetri.

Fase tre. Costruire la parte esterna

Ora procedi alla fabbricazione di porte e pareti esterne della camicia d'acqua. La sequenza di azioni in questo caso dovrebbe essere la seguente.

Passo 1. Ritaglia le pareti esterne dalla lamiera sotto forma di normali rettangoli. Le dimensioni del lato anteriore dovrebbero essere 46,3x56,2 centimetri, il lato - 57,6x77 centimetri e il retro - 46,3x77 centimetri.

Passo 2 Nella parete frontale, praticare una coppia di fori tondi di compensazione (in alternativa questi fori possono essere a forma di diamante) con un diametro di 1 centimetro. Assicurati che i fori si trovino su un'unica linea verticale. E nell'angolo in alto a destra, fai un altro buco, questa volta con un diametro di 1,5 centimetri. Questo foro sarà necessario per il termometro.

Passaggio 3 Fai dei buchi anche nella parete di fondo. Questa dovrebbe essere una coppia di compensazione e altre 3 ausiliarie (per un camino, un'alimentazione del fluido di lavoro con un diametro di 4 centimetri e una valvola di scarico con un diametro di 1,5 centimetri).

Passaggio 4 Continuiamo a costruire la caldaia Kholmov. Ora nelle pareti laterali devi fare 4 fori per la compensazione. In questo caso la prima coppia sulle pareti dovrà essere a filo con il compensatore della camicia, e successivamente qui dovrà essere inserita e saldata una sbarra di ferro. Praticare un paio di fori nella parete sinistra - 4 centimetri di diametro (per l'uscita del fluido di lavoro) e 2 centimetri (per il termostato).

Passaggio 5 Realizza giunti di dilatazione a forma di lettera "P" per un importo di dieci copie. Le dimensioni dovrebbero essere 3x4x4 centimetri (altezza, larghezza e lunghezza, rispettivamente).

Passaggio 6 Saldare questi giunti di dilatazione ai fori corrispondenti nelle pareti esterne.

Passaggio 7 Salda tutte le pareti esterne all'interno.

Passaggio 8 Saldare il camino e i tubi.

Passaggio 9 Saldare quattro bulloni nella parte superiore della struttura. Dovrebbero essere posizionati attorno al perimetro della camera di scambio termico.

Passaggio 10 Verificare la tenuta della struttura. Prendi i tappi per questo e mettili su ciascuno degli ugelli, quindi versa il liquido nel dispositivo. Alzare l'indicatore di pressione a circa 2,2 bar. Standard pressione di esercizio il dispositivo descritto sarà di 1,5 bar. Se trovi perdite, assicurati di sigillarle.

Passaggio 11 Alla fine, saldare il fondo.

Fase quattro. Realizziamo una soglia, porte e una grata

Per quanto riguarda il dado, si tratta di un coperchio rettangolare con una serie di fori e lati. Le dimensioni di questo elemento dovrebbero essere 5,5x16x40 centimetri e l'algoritmo per la sua fabbricazione è riportato di seguito.

Passo 1. Prendi prima la lamiera.

Passaggio 3 Piega i lati.

Passaggio 4 Saldare bene i giunti.

Passaggio 5 Praticare dei fori da 1,2 cm lungo uno dei lati da 40 cm nella quantità di 14 pezzi.

Video - Autoproduzione di una caldaia da miniera

Nota! Capovolgere il dado, posizionarlo nel corpo in modo che si trovi sotto il divisorio dell'acqua sul fondo. Lo spazio in questo caso dovrebbe essere di circa 3,5 centimetri.

Le dimensioni della griglia, secondo i disegni su Internet, dovrebbero essere 20x40 centimetri, sebbene i fori sul fondo in questo caso dovrebbero già essere longitudinali. Realizzare la parte principale della porta allo stesso modo della soglia, quindi praticare nella parte superiore un foro di 8x19 cm. È importante che l'apertura sia chiusa con una copertura a ribalta con tende saldate sull'apertura risultante.

Incollare la porta lungo il perimetro con un cordone di amianto, utilizzando un sigillante resistente al calore. Salda le orecchie sotto i cardini da un lato e una striscia di ferro con una fessura al centro dall'altro. Una maniglia speciale si adatta solo a questo slot.

Alla fine non resta che realizzare i tetti delle camere di combustione/scambio termico utilizzando la stessa tecnologia della parte principale delle porte. Questo è tutto, come puoi vedere, la caldaia di Kholmov ne ha abbastanza design semplice, quindi, è del tutto possibile far fronte alla produzione da soli. Buona fortuna con il tuo lavoro!

Il dispositivo delle caldaie ad acqua calda KV è regolato da GOST 30735-2001 "Caldaie per il riscaldamento dell'acqua calda con una potenza termica da 0,1 a 4,0 MW" e si applica a caldaie con una pressione dell'acqua di esercizio fino a 0,6 MPa (6 kgf / cm2) e temperatura massima acqua all'uscita della caldaia fino a 115 ° C, destinata alla fornitura di calore di edifici e strutture.

Il calcolo termico delle caldaie viene effettuato secondo il metodo normativo "Calcolo termico delle caldaie". Kuznetsov N.V., Mitor V.V. ed altri 1973

Il calcolo idraulico delle caldaie viene effettuato secondo il metodo standard "Calcolo idraulico delle caldaie". Baldina O.M. ed altri 1978

Il calcolo aerodinamico delle caldaie viene effettuato secondo il metodo standard "Calcolo aerodinamico delle caldaie". Mochan SI

Il dispositivo delle caldaie ad acqua calda KV

Le caldaie per acqua calda con una capacità fino a 4,0 MW sono realizzate con disposizione orizzontale a tubi lisci in acciaio. Il rame rappresenta il blocco integrale costituito da due parti fornace e convettiva. Parte del forno - composta da pannelli in acciaio: laterale, soffitto, anteriore e posteriore. Nella parte del forno della caldaia sul forno avviene il processo di combustione del combustibile, il calore irradiato viene trasferito ai pannelli con l'aiuto dello scambio di calore convettivo e radiativo e riscalda il liquido di raffreddamento (acqua). Per aumentare la capacità di trasferimento del calore dei pannelli del forno, questi sono a tenuta di gas (una striscia di acciaio è saldata tra i tubi). Nella parte del forno della caldaia, la temperatura dei gas caldi, a seconda del tipo di combustibile, raggiunge i 1000 - 1200 C. All'uscita dal forno, la temperatura scende a 800 C.

Dopo la parte del forno della caldaia, i gas caldi entrano nel blocco convettivo costituito da sezioni convettive. Le sezioni convettive sono pannelli di montanti e tubi saldati al loro interno. Nel blocco convettivo, la temperatura dei gas caldi viene ridotta a 180 -200 C. Per migliorare il trasferimento di calore nel blocco convettivo della caldaia, i tubi sono disposti a scacchiera e viene installata una partizione. I gas compiono un movimento verso il basso e verso l'alto ed escono dalla sommità del blocco caldaia.

Il dispositivo di isolamento per caldaie ad acqua calda deve garantire che non vi sia aspirazione di aria esterna nell'unità caldaia e che la temperatura del mantello della caldaia non sia superiore a 50°C. Per fare ciò, isolare il sistema di tubazioni placche minerali PTE e installare il rivestimento decorativo in lamiere di acciaio installato sul telaio.

La pulizia dei pannelli convettivi della caldaia dai depositi di fuliggine e cenere viene effettuata tramite portelli nel rivestimento isolante della caldaia. Con il corretto funzionamento dell'impianto della caldaia, una corretta regolazione del tiraggio e dell'esplosione, seguendo le indicazioni del costruttore, non si formano depositi di cenere e fuliggine sui pannelli della caldaia.

Il dispositivo del sistema idraulico della caldaia

Il circuito idraulico della caldaia dell'acqua calda deve fornire il riscaldamento del liquido di raffreddamento (acqua) di 25 C. L'intervallo stimato di temperatura dell'acqua nella caldaia è 115-90 C o 95-70 C.

Inoltre, il circuito idraulico deve fornire portate d'acqua che riducano al minimo la formazione di incrostazioni ed escludano la formazione di zone stagnanti. Per fare ciò, nei collettori della caldaia sono installate pareti divisorie che dirigono il movimento dell'acqua nella caldaia e forniscono la velocità necessaria. A vari modelli caldaie per acqua calda KV, ingresso e uscita acqua è possibile nel collettore camera di combustione, collettori superiori o inferiori dei pannelli convettivi, mentre la posizione dell'ingresso-uscita non influisce sulla differenza di temperatura e cambia facilmente a seconda delle specifiche del cliente, secondo con lo schema del suo locale caldaia.

Per rimuovere i fanghi formatisi durante il funzionamento nella parte del tubo della caldaia, sono previsti scarichi nei collettori inferiori. Le prese d'aria sono installate nei collettori superiori per rimuovere l'aria.

Fornire condizioni di sicurezza funzionamento e modalità di funzionamento progettuali, le caldaie per acqua calda sono dotate di valvole di sicurezza e di intercettazione e controllo, strumentazione e dispositivi di sicurezza. Valvole di intercettazione serve per scaricare l'acqua dalla caldaia a rete di riscaldamento, la fornitura acqua di ritorno in una caldaia ad acqua calda, scaricando l'acqua dalla caldaia, per spurgo intermittente e rimozione dei fanghi. I dispositivi di controllo e misurazione, i termometri e i manometri forniscono la misurazione della pressione e della temperatura all'ingresso e all'uscita dell'acqua dalle caldaie ad acqua calda.

Il dispositivo delle caldaie a combustibile solido KV

A seconda della potenza della caldaia, le caldaie a combustibile solido possono essere con focolare manuale e meccanico:

  • focolare ed
  • focolare a griglia
  • focolare con griglia rotante RPK
  • focolare ZP RPK con ruota ZP e griglie rotanti
  • forno TShPM
  • forno TLPH
  • forno TLZM

Il dispositivo delle caldaie a gas e combustibili liquidi

Caldaie a gas e combustibili liquidi con cui KVA può funzionare vari tipi dispositivi bruciatori di produzione importata e nazionale, per questo, fori e elementi di fissaggio sono realizzati sulla piastra frontale per il bruciatore selezionato.

Le caldaie si distinguono per le seguenti caratteristiche:

Su appuntamento:

Energicamentee- produzione di vapore per turbine a vapore; si distinguono per l'elevata produttività, l'aumento dei parametri del vapore.

Industriale- produrre vapore sia per le turbine a vapore che per le esigenze tecnologiche dell'impresa.

Il riscaldamento- produzione di vapore per riscaldamento industriale, residenziale e edifici pubblici. Questi includono caldaie ad acqua calda. Caldaia ad acqua calda - un dispositivo progettato per produrre acqua calda con una pressione superiore alla pressione atmosferica.

Caldaie a calore residuo- progettati per produrre vapore o acqua calda attraverso l'utilizzo di calore da risorse energetiche secondarie (SER) nel trattamento dei rifiuti chimici, rifiuti domestici, ecc.

Tecnologia energetica- sono progettati per produrre vapore mediante HOR e ne sono parte integrante processo tecnologico(es. unità di recupero della soda).

Secondo il design del dispositivo di combustione(Fig. 7):

Riso. 7. Classificazione generale dei dispositivi di combustione

Distinguere i focolari stratificato - per bruciare combustibile grumoso e Camera - per la combustione di gas e combustibili liquidi, nonché combustibili solidi allo stato polverizzato (o finemente frantumato).

I forni a strati sono suddivisi in forni a letto denso e fluidizzato e i forni a camera sono suddivisi in forni a svasatura a flusso diretto e forni a ciclone (vortice).

I forni a camera per combustibile polverizzato sono suddivisi in forni con rimozione delle ceneri solide e liquide. Inoltre, in base alla progettazione possono essere monocamerali e multicamerali e in modalità aerodinamica - sotto vuoto e sovralimentato.

Fondamentalmente, viene utilizzato uno schema del vuoto, quando viene creata una pressione inferiore alla pressione atmosferica nei condotti del gas della caldaia da un aspiratore di fumi, cioè il vuoto. Ma in alcuni casi, quando si bruciano gas e olio combustibile o combustibili solidi con rimozione delle ceneri liquide, è possibile utilizzare un circuito pressurizzato.

Schema di una caldaia pressurizzata. In queste caldaie fornisce un'unità di ventilazione ad alta pressione sovrapressione nella camera di combustione 4 - 5 kPa, che consente di superare la resistenza aerodinamica del percorso del gas (Fig. 8). Pertanto, in questo schema non esiste un aspiratore di fumo. La tenuta al gas del percorso del gas è assicurata dall'installazione di schermi a membrana nella camera di combustione e sulle pareti delle canne fumarie della caldaia.

Vantaggi di questo schema:

Costi di capitale relativamente bassi per la muratura;

Inferiore rispetto ad una caldaia funzionante sottovuoto, consumo di energia elettrica per il proprio fabbisogno;

Maggiore efficienza grazie alla riduzione delle perdite con i fumi per l'assenza di aspirazione dell'aria nel percorso del gas della caldaia.

Difetto- la complessità della tecnologia di progettazione e produzione delle superfici riscaldanti a membrana.


Per tipo di liquido di raffreddamento generato dalla caldaia: vapore e acqua calda.

Per il movimento di gas e acqua (vapore):

Tubo del gas (tubo del fuoco e con tubi del fumo);

Tubo dell'acqua;

Combinato.

Schema di una caldaia a tubi di fuoco. Le caldaie sono progettate per sistemi chiusi riscaldamento, ventilazione e fornitura di acqua calda e sono prodotti per il funzionamento a una pressione di esercizio consentita di 6 bar e una temperatura dell'acqua consentita fino a 115°C. Le caldaie sono progettate per funzionare con combustibili gassosi e liquidi, inclusi olio combustibile e petrolio greggio, e forniscono un'efficienza del 92% quando si lavora a gas e dell'87% con olio combustibile.

Le caldaie ad acqua calda in acciaio hanno una camera di combustione reversibile orizzontale con una disposizione concentrica di tubi di fuoco (Fig. 9). Per ottimizzare il carico termico, la pressione in camera di combustione e la temperatura dei fumi, i tubi di combustione sono dotati di turbolatori in acciaio inox.

Riso. 8. Schema della caldaia in "pressione":

1 - albero di aspirazione dell'aria; 2 - ventola ad alta pressione; 3 - riscaldatore ad aria del 1° stadio; 4 - economizzatore d'acqua del 1° stadio; 5 - riscaldatore ad aria del 2° stadio; 6 - condotti dell'aria calda; 7 - dispositivo bruciatore; 8 - schermi a tenuta di gas realizzati con tubi a membrana; 9 - canna fumaria

Riso. 9. Schema della camera di combustione delle caldaie a tubi di fumo:

1 - copertina;

2 - forno a caldaia;

3 - tubi antincendio;

4 - tavole tubolari;

5- caminetto parte della caldaia;

6 - botola del camino;

7 - dispositivo bruciatore

Attraverso la circolazione dell'acqua tutta la varietà di design delle caldaie a vapore per l'intera gamma di pressioni di esercizio può essere ridotta a tre tipi:

- a circolazione naturale- Riso. 10 bis;

- con multiplo circolazione forzata - Riso. 10b;

- Una volta attraverso - Riso. 10c.

Riso. 10. Metodi di circolazione dell'acqua

Nelle caldaie a circolazione naturale, il movimento del fluido di lavoro lungo il circuito evaporativo avviene per la differenza di densità delle colonne del mezzo di lavoro: acqua nel sistema di alimentazione discendente e miscela vapore-acqua in quello evaporativo ascendente parte del circuito di circolazione (Fig. 10a). La pressione di pilotaggio di circolazione nel circuito può essere espressa dalla formula

, Papà,

dove h è l'altezza del contorno, g è l'accelerazione di caduta libera, , è la densità dell'acqua e della miscela vapore-acqua.

A pressione critica, il mezzo di lavoro è monofase e la sua densità dipende solo dalla temperatura, e poiché queste ultime sono vicine tra loro nel downcomer e sistemi di sollevamento, allora la pressione motrice della circolazione sarà molto piccola. Pertanto, in pratica, la circolazione naturale viene utilizzata per caldaie solo fino a pressioni elevate, solitamente non superiori a 14 MPa.

Il movimento del fluido di lavoro lungo il circuito evaporativo è caratterizzato dal rapporto di circolazione K, che è il rapporto tra la portata massica oraria del fluido di lavoro attraverso il sistema evaporativo della caldaia e la sua produzione oraria di vapore. Per caldaie moderne finite alta pressione K=5-10, per caldaie a bassa e media pressione K va da 10 a 25.

Una caratteristica delle caldaie a circolazione naturale è il metodo di disposizione delle superfici di riscaldamento, che consiste in quanto segue:

· i pluviali non devono essere riscaldati per mantenere un livello sufficientemente alto;

· i tubi di sollevamento devono essere di progettazione tale da escludere la formazione di ristagni di vapore durante il passaggio della miscela vapore-acqua attraverso di essi;

le velocità dell'acqua e della miscela in tutti i tubi devono essere moderate per ottenere una bassa resistenza idraulica, che si ottiene scegliendo tubi di superficie riscaldante sufficiente grande diametro(60 - 83 mm).

Nelle caldaie a circolazione forzata multipla, il movimento del fluido di lavoro lungo il circuito di evaporazione viene effettuato a causa del funzionamento della pompa di circolazione, che è inclusa nel flusso verso il basso del fluido di lavoro (Fig. 10b). La portata di circolazione viene mantenuta bassa (K=4-8), in quanto la pompa di circolazione ne garantisce la conservazione durante tutte le fluttuazioni di carico. Le caldaie a circolazione forzata multipla risparmiano metallo per riscaldare le superfici, poiché sono consentite velocità dell'acqua più elevate e miscela di lavoro, migliorando così parzialmente il raffreddamento della parete del tubo. Allo stesso tempo, le dimensioni dell'unità sono alquanto ridotte, poiché il diametro dei tubi può essere scelto più piccolo rispetto alle caldaie a circolazione naturale. Queste caldaie possono essere utilizzate fino a pressioni critiche di 22,5 MPa, la presenza di un tamburo consente di asciugare bene il vapore e soffiare attraverso l'acqua contaminata della caldaia.

Nelle caldaie a passaggio singolo (Fig. 10c), il rapporto di circolazione è uguale a uno e il movimento del fluido di lavoro dall'ingresso all'economizzatore all'uscita dell'unità di vapore surriscaldato è forzato, effettuato dalla pompa di alimentazione. Non è presente il tamburo (elemento piuttosto costoso), che dà un certo vantaggio alle unità a flusso diretto ad altissima pressione; questa circostanza determina tuttavia un aumento del costo del trattamento dell'acqua di stazione a pressione supercritica, in quanto aumentano i requisiti di purezza dell'acqua di alimentazione, che in questo caso non dovrebbe contenere più impurità del vapore prodotto dalla caldaia. Le caldaie a passaggio unico sono universali in termini di pressione di esercizio e, a pressione supercritica, sono generalmente gli unici generatori di vapore e sono ampiamente utilizzati nella moderna industria dell'energia elettrica.

Esiste un tipo di circolazione dell'acqua nei generatori di vapore a passaggio unico - circolazione combinata, effettuata da una pompa speciale o un circuito di circolazione parallelo aggiuntivo di circolazione naturale nella parte evaporativa di una caldaia a passaggio unico, che consente di migliorare il raffreddamento dei tubi schermati a bassi carichi della caldaia aumentando la massa circolante attraverso di essi del 20-30% dell'ambiente di lavoro.

Schema di una caldaia a circolazione forzata multipla per la pressione subcritica è mostrato in fig. undici.

Riso. undici. Schema strutturale caldaia a circolazione forzata multipla:

1 - economizzatore; 2 - tamburo;

3 - tubo di alimentazione inferiore; 4 - pompa di circolazione; 5 - distribuzione dell'acqua attraverso i circuiti di circolazione;

6 - superfici riscaldanti per radiazione evaporativa;

7 - festone; 8 - surriscaldatore;

9 - riscaldatore ad aria

La pompa di circolazione 4 funziona con una caduta di pressione di 0,3 MPa e consente l'utilizzo di tubi di piccolo diametro, risparmiando metallo. Il piccolo diametro dei tubi e il basso rapporto di circolazione (4 - 8) provocano una relativa diminuzione del volume d'acqua dell'unità, quindi una diminuzione delle dimensioni del tamburo, una diminuzione della perforazione in esso, e quindi un generale diminuzione del costo della caldaia.

Il piccolo volume e l'indipendenza della pressione di circolazione utile dal carico consentono di fondere e fermare rapidamente l'unità, ad es. operare in modalità di controllo. L'ambito delle caldaie a circolazione forzata multipla è limitato da pressioni relativamente basse, alle quali è possibile ottenere il massimo effetto economico grazie alla riduzione del costo delle superfici riscaldanti evaporative convettive sviluppate. Le caldaie a circolazione forzata multipla hanno trovato distribuzione negli impianti a recupero di calore e negli impianti a ciclo combinato.

Caldaie a flusso diretto. Le caldaie a passaggio diretto non hanno un confine fisso tra l'economizzatore e la parte evaporativa, tra la superficie riscaldante evaporativa e il surriscaldatore. Quando la temperatura dell'acqua di alimentazione, la pressione di esercizio nell'unità, il regime dell'aria del forno, il contenuto di umidità del combustibile e altri fattori cambiano, i rapporti tra le superfici riscaldanti dell'economizzatore, la parte dell'evaporatore e il surriscaldatore cambiano . Quindi, quando la pressione nella caldaia diminuisce, il calore del liquido diminuisce, il calore di evaporazione aumenta e il calore di surriscaldamento diminuisce, quindi la zona occupata dall'economizzatore (zona di riscaldamento) diminuisce, la zona di evaporazione aumenta e la zona di surriscaldamento diminuisce.

Nelle unità a flusso diretto, tutte le impurità provenienti da nutrire l'acqua, non possono essere rimossi con soffiaggio come le caldaie a tamburo e si depositano sulle pareti delle superfici riscaldanti o vengono portati via con il vapore nella turbina. Pertanto, le caldaie a passaggio unico richiedono elevati requisiti di qualità dell'acqua di alimentazione. Per ridurre il rischio di esaurimento dei tubi dovuto al deposito di sali al loro interno, la zona in cui evaporano le ultime gocce di umidità e inizia il surriscaldamento del vapore viene estratta dal forno a pressioni subcritiche in un condotto del gas convettivo (il cosiddetto zona di transizione remota).

Nella zona di transizione si ha una precipitazione energetica e una deposizione di impurità, e poiché la temperatura della parete del metallo dei tubi nella zona di transizione è inferiore a quella del forno, il rischio di bruciare i tubi è notevolmente ridotto e lo spessore dei depositi può essere consentito essere maggiore. Di conseguenza, viene allungata la campagna di lavoro interflushing della caldaia.

Per le unità di pressione supercritica, la zona di transizione, cioè è presente anche una zona di maggiore precipitazione salina, ma è molto estesa. Quindi, se per le alte pressioni la sua entalpia è misurata come 200-250 kJ / kg, allora per le pressioni supercritiche aumenta a 800 kJ / kg, e quindi l'esecuzione della zona di transizione remota diventa impraticabile, soprattutto perché il contenuto di sale nell'alimentazione l'acqua è così bassa, che è quasi uguale alla loro solubilità in vapore. Pertanto, se una caldaia progettata per pressione supercritica ha una zona di transizione remota, ciò avviene solo per motivi di raffreddamento convenzionale. Gas di scarico.

A causa del piccolo volume di accumulo dell'acqua nelle caldaie a passaggio singolo ruolo importante svolge il sincronismo della fornitura di acqua, carburante e aria. Se questa conformità viene violata, è possibile fornire alla turbina vapore umido o eccessivamente surriscaldato e quindi, per le unità una tantum, l'automazione del controllo di tutti i processi è semplicemente obbligatoria. Caldaie monouso progettate dal professor L.K. Ramzin. Una caratteristica della caldaia è la disposizione delle superfici riscaldanti radianti sotto forma di un avvolgimento ascendente orizzontalmente di tubi lungo le pareti del forno con un minimo di collettori (Fig. 12).

Riso. 12. Schema strutturale della caldaia unica di Ramzin:

1 - economizzatore; 2 - bypass dei tubi non riscaldati; 3 - collettore di distribuzione inferiore dell'acqua; 4 - tubi schermanti; 5 - collettore superiore di raccolta della miscela; 6 - zona di transizione remota; 7 - parte della parete del surriscaldatore; 8 - parte convettiva del surriscaldatore; 9 - riscaldatore ad aria; 10 - bruciatore

Come ha dimostrato in seguito la pratica, tale schermatura ha sia positivo che lati negativi. Positivo è il riscaldamento uniforme dei singoli tubi inclusi nel nastro, poiché i tubi passano lungo l'altezza del forno tutte le zone di temperatura nelle stesse condizioni. Negativo: l'impossibilità di eseguire superfici di radiazione con blocchi di grandi dimensioni in fabbrica, nonché una maggiore tendenza a farlo alesatori termoidraulici(distribuzione irregolare di temperatura e pressione nei tubi lungo la larghezza del condotto del gas) a pressione ultraelevata e supercritica a causa di un grande incremento di entalpia in una lunga bobina.

Per tutti i sistemi di unità a flusso diretto sono osservati alcuni requisiti generali. Quindi, in un economizzatore convettivo, l'acqua di alimentazione non viene riscaldata all'ebollizione di circa 30 °C prima di entrare negli schermi del forno, il che elimina la formazione di una miscela di vapore-acqua e la sua distribuzione irregolare sui tubi paralleli degli schermi. Inoltre, nella zona di combustione attiva del combustibile, negli schermi, viene fornita una velocità di massa ρω ≥ 1500 kg / (m 2 s) sufficientemente elevata con una potenza nominale di vapore D n, che garantisce un raffreddamento affidabile dei tubi dello schermo. Circa il 70 - 80% dell'acqua si trasforma in vapore negli schermi del forno e l'umidità rimanente evapora nella zona di transizione e tutto il vapore viene surriscaldato di 10-15 ° C per evitare depositi di sale nella parte superiore di irraggiamento del surriscaldatore.

Inoltre, le caldaie a vapore sono classificate in base alla pressione del vapore e alla produzione di vapore.

Pressione del vapore:

Basso - fino a 1 MPa;

Medio da 1 a 10 MPa;

Alto - 14 MPa;

Altissimo - 18-20 MPa;

Supercritico - 22,5 MPa e oltre.

Per prestazione:

Piccolo - fino a 50 t/h;

Medio - 50-240 t/h;

Grande (energia) - oltre 400 t / h.

Marcatura caldaia

I seguenti indici sono stabiliti per la marcatura delle caldaie:

- Tipo di carburante : Per- carbone; B- lignite; DA- liste; M- carburante; G- gas (quando l'olio combustibile e il gas vengono bruciati in un forno a camera, l'indice del tipo di forno non è indicato); o- rifiuti, immondizia; D- altri tipi di carburante;

- tipo focolare: T- forno a camera con rimozione delle scorie solide; E- forno a camera con rimozione delle scorie liquide; R- forno a stratificazione (l'indice del tipo di combustibile bruciato nel forno a stratificazione non è indicato nella designazione); A- forno a vortice; C- forno a ciclone; F- forno a letto fluido; un indice viene introdotto nella designazione delle caldaie pressurizzate H; per la progettazione antisismica - indice DA.

- metodo di circolazione: E- naturale; Eccetera- forzata multipla;

pp- caldaie una tantum.

I numeri indicano:

- per caldaie a vapore- portata vapore (t/h), pressione vapore surriscaldato (bar), temperatura vapore surriscaldato (°С);

- per acqua calda- potenza termica (MW).

Per esempio: Pp1600-255-570 J. Caldaia a passaggio unico con una capacità di vapore di 1600 t/h, pressione del vapore surriscaldato - 255 bar, temperatura del vapore - 570 °C, forno con rimozione delle ceneri liquide.

Disposizione della caldaia

Per disposizione della caldaia si intende la disposizione reciproca dei condotti del gas e delle superfici riscaldanti (Fig. 13).

Riso. 13. Schemi di layout della caldaia:

un --- A forma di U disposizione; b - disposizione a due vie; c - disposizione con due alberi convettivi (a T); g - disposizione con alberi convettivi a forma di U; e - layout con forno inverter; e - disposizione della torre

Il più comune A forma di U disposizione (Fig. 13a - senso unico, 13b - a due vie). I suoi vantaggi sono l'alimentazione di combustibile nella parte inferiore del forno e la rimozione dei prodotti della combustione dalla parte inferiore dell'albero di convezione. Gli svantaggi di questa disposizione sono il riempimento irregolare della camera di combustione con i gas e il lavaggio irregolare delle superfici riscaldanti situate nella parte superiore dell'unità con i prodotti della combustione, nonché la concentrazione irregolare di ceneri sulla sezione trasversale del convettivo lancia.

A forma di T la disposizione con due alberi convettivi posti su entrambi i lati del forno con il movimento di sollevamento dei gas nel forno (Fig. 13c) consente di ridurre la profondità del pozzo convettivo e l'altezza del condotto orizzontale, ma la presenza di due alberi convettivi complicano la rimozione dei gas.

tre vie la disposizione dell'unità con due alberi convettivi (Fig. 13d) è talvolta utilizzata per la posizione superiore degli aspiratori di fumo.

Quattro vie la disposizione (bidirezionale a T) con due condotti verticali del gas di transizione riempiti con superfici riscaldanti scaricate è utilizzata quando l'unità funziona con combustibile cenere con ceneri bassofondenti.

Torre lo schema (Fig. 13e) è utilizzato per generatori di vapore di punta funzionanti a gas e olio combustibile per utilizzare l'auto tiraggio dei condotti del gas. In questo caso, sorgono difficoltà associate al fissaggio di superfici riscaldanti convettive.

A forma di U la disposizione con un forno inverter con un flusso verso il basso di prodotti della combustione al suo interno e il loro movimento di sollevamento in un albero convettivo (Fig. 13e) garantisce un buon riempimento del forno con una torcia, una posizione bassa dei surriscaldatori e una resistenza minima dell'aria percorso a causa della breve lunghezza dei condotti dell'aria. Lo svantaggio di questa disposizione è l'aerodinamica degradata del condotto del gas di transizione, a causa della posizione di bruciatori, aspiratori di fumo e ventilatori su alta altitudine. Tale disposizione può essere appropriata quando la caldaia funziona a gas e olio combustibile.

L'attività principale della GK "KANEX" è la produzione e fornitura di pezzi di ricambio per caldaie a vapore centrali termiche e altre apparecchiature e tubazioni ausiliarie delle caldaie. I principali siti di produzione della holding sono lo stabilimento di Shchekino di apparecchiature e tubazioni ausiliarie per caldaie, la Kyshtym Machine-Building Association e l'impresa Ozerskkhimprom.

Le caldaie a vapore sono progettate per funzionare come parte di unità di potenza di centrali termiche e centrali termiche. La vita utile delle caldaie a vapore è limitata dalla risorsa calcolata ed è determinata dalle condizioni operative dell'apparecchiatura. Durante il funzionamento delle apparecchiature delle centrali termiche, è necessario sostituire periodicamente singoli blocchi e unità di caldaie. Questa è una situazione normale anche per apparecchiature di altissima qualità, perché nodi diversi può avere termine diverso sfruttamento per ragioni oggettive. Soprattutto per questi casi, le imprese della nostra azienda producono pezzi di ricambio e componenti per la riparazione di caldaie e offrono varie opzioni ammodernamento delle apparecchiature della caldaia.

Tipi di componenti forniti per caldaie a vapore:

1. Telaio caldaia.

Il telaio dell'unità caldaia è una struttura metallica che riceve il carico dal tamburo, dalle superfici riscaldanti, dal rivestimento, dalle piattaforme e dalle scale e da altri elementi dell'unità caldaia e lo trasferisce alla fondazione o alle strutture edilizie dell'edificio. Il telaio di un moderno gruppo caldaia ad alta capacità di vapore ha struttura complessa ed è composto da colonne verticali collegandoli con capriate orizzontali, travi e tiranti diagonali. La sommità delle colonne è collegata da una trave di sostegno (spina dorsale) e da un soffitto. Quasi tutti gli elementi del telaio: colonne, capriate, travi e tiranti sono collegati mediante saldatura, che garantisce la stabilità e la resistenza del telaio. Solo travi che possono, durante la dilatazione termica o la flessione, creare notevoli sollecitazioni aggiuntive nelle colonne, poggiare liberamente sul telaio e sono imbullonate attraverso fori ovali.

2. Tamburo della caldaia.

In una caldaia a circolazione naturale o forzata, la generazione di vapore avviene in un tamburo, cioè vaso cilindrico con un diametro fino a 1,8 m con uno spessore della parete fino a 100 mm o più e una lunghezza fino a 30 m Attaccato al tamburo un gran numero di tubi di sollevamento e abbassamento del circuito di circolazione, viene fornita acqua di alimentazione e collegato un surriscaldatore. Il tamburo è montato sul telaio della caldaia mediante cuscinetti a rulli, che garantiscono la libera espansione del tamburo quando riscaldato. I dispositivi di separazione del vapore sono posti all'interno del tamburo.

3. Tubi dell'acqua.

Sono utilizzati per fornire acqua ai tubi dello schermo del forno dal tamburo della caldaia. Per la produzione di canali sotterranei vengono utilizzati principalmente tubi di acciaio di grado 20 con un diametro di 83-159 mm.

4. Schermi del forno.

Sono gli elementi costitutivi della camera di combustione. Gli schermi dei forni hanno allo stesso tempo un duplice scopo: fungono da superfici di chiusura e da superfici riscaldanti. Gli schermi delle caldaie sono generalmente realizzati tubi lisci collegati mediante saldatura. Oltre al fatto che gli schermi percepiscono il calore del forno, proteggono il rivestimento delle pareti del forno dagli effetti dannosi delle alte temperature e esposizione chimica scorie liquide. La temperatura della muratura dietro i tubi dello schermo nelle moderne caldaie non supera i 500 ⁰С, il che rende più facile murare la muratura e aumentarne la durata. I tubi schermanti delle moderne caldaie ad alta pressione a circolazione naturale hanno un diametro esterno di 60 mm, le caldaie a media pressione - 83 mm, la distanza tra i tubi è rispettivamente di 4 e 19 mm. Le estremità dei tubi dello schermo sono saldate ai raccordi collettori orizzontali sezione rotonda realizzati con tubi a pareti spesse, o direttamente al collettore.

5. Surriscaldatore a soffitto.

Fa parte del design della caldaia. Appartiene alle superfici di riscaldamento radiativo, che percepiscono il calore dei gas, dovuto principalmente all'irraggiamento. È realizzato con tubi di acciaio con un diametro di 32-60 mm e uno spessore della parete di 4-6 mm.

La parte radiativa del surriscaldatore, situata sulle pareti e sul soffitto della camera di combustione, percepisce il calore radiante e differisce poco nel design dagli schermi: è costituita da tubi saldati a collettori rotondi. In ogni pannello della parte radiante del surriscaldatore, il vapore si muove attraverso i tubi prima dall'alto verso il basso, quindi attraverso il collettore inferiore entra in altri tubi, attraverso i quali viene diretto verso l'alto. In diversi punti lungo l'altezza dei tubi, i supporti di guida sono fissati alle travi del telaio; questi elementi di fissaggio non impediscono il movimento verticale dei tubi al variare della loro temperatura. Chiusura orizzontale tubi del soffitto inoltre non dovrebbe impedirli allungamento termico. Questi tubi sono sospesi su aste al soffitto del telaio.

6. Scudo riscaldatore a vapore.

Si tratta di un dispositivo progettato per riscaldare il vapore ad una temperatura superiore alla saturazione grazie all'assorbimento di calore radiante dalla camera di combustione. Strutturalmente, il blocco ShPP è realizzato sotto forma di pacchetti a più file (schermi) realizzati con tubi di acciaio piegati (diametro del tubo 32-38 mm), combinati con una camera di ingresso e uscita.

La parte semiradiante del surriscaldatore (schermo), posta nella parte superiore del forno e nella canna fumaria orizzontale, percepisce sia il calore radiante per irraggiamento, sia il calore ceduto per convezione.

7. Surriscaldatore convettivo.

Questo dispositivo è progettato per surriscaldare il vapore fino a temperatura richiesta dovuto alla percezione del calore convettivo dalla camera di combustione. Strutturalmente, il blocco del cambio è un sistema di tubi in acciaio (bobine) combinati in una camera di ingresso e di uscita. Il cambio è uno dei componenti più critici della caldaia e funziona in condizioni gravose condizioni di temperatura. A seconda dei parametri di uscita del vapore surriscaldato, il cambio è realizzato in acciaio legato o altolegato.

La parte convettiva del surriscaldatore si trova nella canna fumaria orizzontale e nel vano convettivo. Nelle caldaie a media pressione, in cui solo il 20% del calore totale viene speso per il surriscaldamento del vapore, l'intero surriscaldatore si trova in una canna fumaria orizzontale.

8. Microblocchi.

Appartengono alla parte convettiva della caldaia e servono a surriscaldare il vapore alla temperatura richiesta per la percezione del calore convettivo dalla camera di combustione. Strutturalmente, i microblocchi sono un sistema di bobine in acciaio combinate con una camera di ingresso e di uscita. Di solito, per la produzione di microblocchi vengono utilizzati tubi di acciaio 12Kh1MF, 12Kh18N12T.

9. Caldaie monouso NRCH, SRCH, VRCH.

Nelle caldaie a passaggio singolo, è consuetudine distinguere negli schermi le parti di radiazione inferiore (LRCh), centrale (MSF) e superiore (VRCh). Per la produzione di schermi per caldaie a passaggio singolo, vengono solitamente utilizzati tubi con un diametro esterno di 32, 38 e 42 mm. Vengono utilizzati sia pannelli con tubi verticali dritti che pannelli multi-loop. I pannelli tubolari a passaggio singolo e multipassaggio sono ampiamente utilizzati nelle moderne caldaie a passaggio singolo. La parte inferiore di irraggiamento (LRH), situata nella zona del nucleo della torcia, dove si dovrebbe prestare particolare attenzione al riscaldamento irregolare dei singoli tubi, è realizzata con pannelli a passaggio singolo. I livelli superiori degli schermi (SFC, TCG) hanno pannelli multidirezionali.

10. Economizzatore d'acqua.

Questo è un elemento della caldaia progettato per il preriscaldamento dell'acqua della caldaia utilizzando il calore dei gas di scarico. WEC è costruzione a blocchi, costituito da file di pacchi batteria, camere di ingresso e uscita. Gli economizzatori d'acqua di tipo bollente sono utilizzati nelle moderne caldaie, in cui l'acqua non solo viene portata a un punto di ebollizione, ma anche parzialmente convertita in vapore saturo. Gli economizzatori sono realizzati sotto forma di pacchetti di tubi installati nell'albero convettivo dell'unità caldaia lungo i gas di scarico dietro il surriscaldatore convettivo. I pacchi sono costituiti da serpentine ricavate da tubi con diametro esterno da 25 a 42 mm, saldati ai raccordi o direttamente al collettore.

11. Riscaldatore ad aria.

Questo dispositivo è progettato per preriscaldare l'aria fornita al forno della caldaia per aumentare l'efficienza della combustione del carburante e, di conseguenza, aumentare l'efficienza della caldaia. Nelle caldaie funzionanti a combustibile polverizzato, l'essiccazione viene effettuata anche con aria calda proveniente dal VZP. I riscaldatori ad aria si dividono in due tipi: recuperativi (tubolari) e rigenerativi (rotanti).

11.1. Riscaldatore ad aria tubolare.

Il riscaldatore ad aria tubolare è costituito da singoli elementi (cubi), in cui tubi verticali in acciaio rettilinei 51×1,5 o 40×1,5 mm, disposti a scacchiera, sono saldati alle loro estremità a piastre tubiere orizzontali. I gas di scarico si muovono all'interno dei tubi e l'aria passa tra i tubi in direzione orizzontale. Di solito, diverse colonne di un riscaldatore d'aria sono installate lungo la larghezza dell'unità caldaia e diversi cubi verticalmente. Da un cubo all'altro, l'aria passa attraverso i condotti di bypass. Per compensare l'espansione termica del riscaldatore d'aria, è installato un compensatore di lente esterno, saldato in basso al cubo superiore e in alto al telaio della guaina. Nei riscaldatori ad aria con un'altezza superiore a 3 m, sono installati compensatori laterali aggiuntivi tra le piastre tubiere superiori e le pareti esterne dell'albero di convezione.

11.2. Riscaldatore ad aria rigenerativo.

Le moderne caldaie sono dotate di due o più dispositivi di riscaldatore d'aria rigenerativo con un diametro di 6,8 o 9,8 m, collegati in parallelo. Ogni apparato di un riscaldatore d'aria rigenerativo è costituito da: un corpo, un rotore cilindrico, che ruota lentamente attorno ad un asse verticale di tubi dell'aria e del gas, fornendo e scaricando aria e gas di scarico.

Le piastre verticali in acciaio poste nel rotore durante la rotazione del rotore vengono riscaldate alternativamente dal flusso dei gas di combustione che passano tra di loro, quindi vengono raffreddate nel flusso d'aria e cedendo all'aria il calore precedentemente ricevuto. Il rotore è composto da un largo numero sezioni a cuneo contenenti piastre verticali fissate con telaio. La forma delle piastre garantisce la formazione di intercapedini tra loro per il passaggio alternato dei fumi e dell'aria. Il motore elettrico aziona il rotore attraverso un riduttore e una lanterna, che è costituita da rulli verticali (perni) situati attorno alla circonferenza del rotore. Un tale impegno della lanterna, pur non essendo rigido, può funzionare in modo affidabile se ci sono alcune imprecisioni nella fabbricazione del rotore. Per impedire il deflusso dell'aria nei fumi, il dispositivo è dotato di una tenuta periferica anulare, di una tenuta interna anulare attorno all'albero verticale e di tenute radiali tra le scatole del gas e dell'aria. Tutte queste guarnizioni sono installate sia nella parte superiore che in quella inferiore del rotore.

12. Unità di condensazione.

Le caldaie a condensazione funzionano secondo un principio noto da oltre cento anni. Uso efficace di questo metodo è iniziato abbastanza di recente. È diventato possibile utilizzare leghe che non sono soggette a corrosione nella produzione di caldaie per riscaldamento, nonché utilizzare varie marche di acciaio inossidabile.

Il ventilatore è installato davanti al bruciatore, che aspira il gas dal gasdotto, lo miscela con l'aria e invia la miscela di combustibile funzionante al bruciatore. I gas di scarico vengono rimossi attraverso camini coassiali "tubo in tubo", che sono realizzati in plastica resistente al calore. La pompa a controllo automatico ottimizza la potenza dell'impianto di riscaldamento, risparmia energia elettrica e riduce il rumore dell'aria di ricircolo. sistema di riscaldamento liquido di raffreddamento.

13. Tubi del vapore.

Sono elementi tubolari che lavorano sotto pressione. Sono realizzati con tubi con un diametro di 108-133 mm. Il tipo di acciaio utilizzato e lo spessore della parete del tubo dipendono dai parametri in base ai quali il tubo opera. Di solito, per la produzione di tubi di bypass del vapore, vengono utilizzati tipi di acciaio: 20, 12XMF, 12X1MF, 15GS e simili.

14. Collezionisti.

Questi elementi della caldaia, destinati alla raccolta o alla distribuzione del mezzo di lavoro, sono una struttura cilindrica saldata a pareti spesse in acciaio e uniscono un gruppo di tubi. In base al loro scopo, i collettori sono suddivisi in collettori di vapore, acqua, surriscaldatori e collettori di piccolo diametro, utilizzati, di regola, per gli economizzatori. I collettori sono realizzati con tubi di acciaio: 20, 15GS, 15XM, 12X1MF, 15X1M1F.

15. Desurriscaldatori.

Sono sistemi di scambio termico progettati per abbassare la temperatura del vapore surriscaldato in un gruppo caldaia o davanti ad una turbina.

I desurriscaldatori sono generalmente installati in un collettore intermedio. A seconda della posizione dei desurriscaldatori nella caldaia e del tipo di scambio termico in essa effettuato, si distinguono i desurriscaldatori irraggiamento, irraggiamento convettivo, schermo e desurriscaldatori convettivi. Tutti i desurriscaldatori, a seconda del principio del raffreddamento a vapore, sono suddivisi in superficie e iniezione.

Nei desurriscaldatori di superficie, il vapore viene raffreddato rimuovendo il calore dal vapore con l'acqua di alimentazione, che viene fatta passare attraverso i tubi dello scambiatore di calore.

I desurriscaldatori a iniezione utilizzano il raffreddamento a vapore rimuovendo il calore dal vapore con l'acqua di alimentazione, che viene iniettata direttamente nell'apparato.

16. Bloccare i bruciatori automatizzati.

Sono caratterizzati da un'ampia gamma di potenza termica - 10 ... 20000 kW e sono progettati per funzionare con gas naturale e liquefatto, combustibili liquidi leggeri e olio combustibile. I bruciatori combinati bruciano sia combustibili gassosi che liquidi.

Il bruciatore è predisposto per la combustione di gas naturale e liquefatto ed è dotato dei seguenti raccordi: rubinetto a sfera per alimentazione gas; pressostato gas; multiblocco multifunzionale a gas, che ha un filtro (trappola per lo sporco), due valvole magnetiche, regolatore di pressione del gas. Attraverso il canale di collegamento, il gas entra nel tubo della fiamma.

17. Scappatoie dei bruciatori.

Sono un componente strutturale delle pareti dei blocchi del forno. Svolgono il ruolo di una struttura per posizionare il dispositivo bruciatore della caldaia.

18. Set di caldaie.

Le serrande antifumo (cancelli) sono installate nei condotti del gas dietro ogni caldaia, con l'aiuto del quale viene regolato il tiraggio. I boccaporti e i tombini vengono utilizzati per l'ispezione, la riparazione o la pulizia delle superfici riscaldanti esterne ed interne. Le valvole esplosive sono installate nella parte superiore del forno o nella canna fumaria delle caldaie funzionanti con combustibili gassosi o liquidi, che servono a proteggere il rivestimento del forno e della caldaia dalla distruzione durante un'esplosione.

Contatti: